2022-01-04 00:23:50 +01:00
|
|
|
\documentclass[a4paper,french,12pt]{article}
|
|
|
|
|
|
|
|
\title{
|
|
|
|
Théorie du signal --- TP1
|
|
|
|
\\ \large Décomposition en Série de Fourier
|
|
|
|
}
|
2022-01-04 11:12:31 +01:00
|
|
|
\author{Alexandre CHEN et Tunui FRANKEN}
|
2022-01-04 00:23:50 +01:00
|
|
|
\date{Dernière compilation~: \today{} à \currenttime}
|
|
|
|
|
|
|
|
\usepackage{../../cours}
|
|
|
|
\usepackage{enumitem}
|
|
|
|
\usepackage{xfrac}
|
|
|
|
\usepackage{tikz}
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
\maketitle
|
|
|
|
|
|
|
|
\section{Partie théorique}
|
|
|
|
|
|
|
|
\subsection{Coefficients de Fourier}
|
|
|
|
Donner l'expression de la DSF réelle des signaux suivants $T_0$-périodiques~:
|
|
|
|
\begin{align*}
|
|
|
|
x_1(t) = 1 - \frac{2}{T_0} |t| \quad \forall t \in \left[-\frac{T_0}{2}; \frac{T_0}{2}\right]
|
|
|
|
\end{align*}
|
|
|
|
avec $T_0 = 0.5s$.
|
|
|
|
|
|
|
|
$x_1$ est paire, donc les $b_n$ sont nuls.
|
|
|
|
\begin{align*}
|
|
|
|
a_0 &= \frac{1}{T_0} \int_{-\sfrac{T_0}{2}}^{\sfrac{T_0}{2}} 1 - \frac{2}{T_0}|t| \dif t \\
|
|
|
|
&= \frac{2}{T_0} \int_0^{\sfrac{T_0}{2}} 1 \dif t - \frac{2}{T_0} \int_0^{\sfrac{T_0}{2}} \frac{2}{T_0}|t| \dif t \\
|
|
|
|
&= \frac{2}{T_0} [t]_0^{\sfrac{T_0}{2}} - \frac{4}{T_0^2} \left[\frac{t^2}{2}\right]_0^{\sfrac{T_0}{2}} \\
|
|
|
|
&= 1 - \frac{4T_0^2}{8T_0^2} \\ \\
|
|
|
|
a_0 &= \frac{1}{2}
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\begin{align*}
|
|
|
|
a_n &= \frac{2}{T_0} \int_{(T_0)} \left(1-\frac{2}{T_0}|t|\right)\cos(n\omega_0 t) \dif t \\
|
2022-01-04 09:28:00 +01:00
|
|
|
\text{IPP avec }
|
|
|
|
&\left\{
|
|
|
|
\begin{array}{l}
|
|
|
|
u = 1 - \frac{2}{T_0}|t| \quad\implies
|
|
|
|
u' = -\frac{2}{T_0} \\ \\
|
|
|
|
v' = \cos(n\omega_0 t) \quad\implies
|
|
|
|
v = \frac{\sin(n\omega_0 t)}{n\omega_0}
|
|
|
|
\\
|
|
|
|
\end{array}
|
|
|
|
\right.\\
|
2022-01-04 11:12:31 +01:00
|
|
|
a_n &= \frac{4}{T_0}\left(\left[
|
2022-01-04 09:28:00 +01:00
|
|
|
1 - \frac{2}{T_0}|t|
|
|
|
|
\frac{\sin(n\omega_0 t)}{n\omega_0}
|
|
|
|
\right]_0^{T_0/2}
|
2022-01-04 11:12:31 +01:00
|
|
|
- \int_0^{\sfrac{T_0}{2}} -\frac{2}{T_0}\frac{\sin(n\omega_0 t)}{n\omega_0}\dif t \right) \\
|
|
|
|
&= \frac{4}{T_0}\left(
|
|
|
|
\left[
|
|
|
|
\left(1 - \frac{2T_0}{T_0 2}\frac{\sin(n\pi)}{\frac{n2\pi}{T_0}}\right) - (1 - 0)
|
|
|
|
\right]
|
|
|
|
+ \frac{2}{2n\pi}\left[
|
|
|
|
\left(
|
|
|
|
\frac{-\cos(n\pi)}{\frac{2n\pi}{T_0}}
|
|
|
|
\right) - \frac{1}{\frac{2n\pi}{T_0}}
|
|
|
|
\right]
|
|
|
|
\right) \\
|
|
|
|
&= \frac{4}{T_0}\frac{2}{2n\pi}\left(
|
|
|
|
\frac{-\cos(n\pi) - 1}{\frac{2n\pi}{T_0}}
|
|
|
|
\right) \\
|
|
|
|
&= \frac{2}{(n\pi)^2}(-\cos(n\pi) + 1)
|
2022-01-04 00:23:50 +01:00
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\begin{align*}
|
|
|
|
S_x(t) &= a_0 + \sum_{n=0}^{+\infty} a_n\cos(n\omega_0 t) \\
|
2022-01-04 11:12:31 +01:00
|
|
|
&= \frac{1}{2} + \sum_{n=0}^{+\infty} \frac{2}{(n\pi)^2}(-\cos(n\pi) + 1) \cos(n\omega_0 t)
|
2022-01-04 00:23:50 +01:00
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\begin{align*}
|
|
|
|
x_2(t) =
|
|
|
|
\left\{
|
|
|
|
\begin{array}{l}
|
|
|
|
1 \quad \forall t \in \left[-\frac{T_0 r}{2}; \frac{T_0 r}{2}\right] \\
|
|
|
|
0 \quad \text{sinon}
|
|
|
|
\end{array}
|
|
|
|
\right.
|
|
|
|
\end{align*}
|
|
|
|
avec $r$ le rapport cyclique tel que $r < 1$ et $T_0 = 0.5s$.
|
|
|
|
|
2022-01-04 11:12:31 +01:00
|
|
|
$x_2$ est paire, donc les $b_n$ sont nuls.
|
|
|
|
\begin{align*}
|
|
|
|
a_0 &= \frac{1}{T_0}\int_{(T_0)}1\dif t \\
|
|
|
|
&= \frac{2}{T_0}\int_0^{\sfrac{rT_0}{2}} 1\dif t \\
|
|
|
|
&= \frac{2}{T_0}[t]_0^{\sfrac{rT_0}{2}} \\
|
|
|
|
&= \frac{2}{T_0}\frac{rT_0}{2} \\
|
|
|
|
a_0 &= r
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\begin{align*}
|
|
|
|
a_n &= \frac{2}{T_0}\int_{(T_0)}1\cdot\cos(n\omega_0 t)\dif t \\
|
|
|
|
&= \frac{4}{T_0}\left[
|
|
|
|
\frac{\sin(n\omega_0 t)}{n\omega_0}
|
|
|
|
\right]_0^{\sfrac{rT_0}{2}} \\
|
|
|
|
&= \frac{4}{T_0}\frac{\sin(n\pi r)}{n2\pi/T_0} \\
|
|
|
|
&= \frac{4\sin(n\pi r)}{n2\pi} \\
|
|
|
|
a_n &= \frac{2\sin(n\pi r)}{n\pi}
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\begin{align*}
|
|
|
|
S_x(t) &= a_0 + \sum_{n=0}^{+\infty} a_n\cos(n\omega_0 t) \\
|
|
|
|
&= r + \sum_{n=0}^{+\infty} \frac{2\sin(n\pi r)}{n\pi} \cos(n\omega_0 t)
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\subsection{Densité Spectrale de Puissance}
|
|
|
|
|
|
|
|
\subsubsection{Pour $x_1$}
|
|
|
|
\begin{equation*}
|
|
|
|
c_0 = a_0 = \frac{1}{2}
|
|
|
|
\end{equation*}
|
|
|
|
\begin{align*}
|
|
|
|
c_n &= \frac{1}{2}\frac{2}{(n\pi)^2}(-\cos(n\pi) + 1) \\
|
|
|
|
&= \frac{-\cos{n\pi} + 1}{(n\pi)^2}
|
|
|
|
\end{align*}
|
|
|
|
\begin{align*}
|
|
|
|
S_{x_1}(f) &= \sum_{n=-\infty}^{+\infty} \left|\frac{-\cos(n\pi) + 1}{(n\pi)^2}\right|^2 \\
|
|
|
|
&= \sum_{n=-\infty}^{+\infty} \left|\frac{-(-1)^n + 1}{(n\pi)^2}\right|^2 \\
|
|
|
|
&=
|
|
|
|
\left\{
|
|
|
|
\begin{array}{l}
|
|
|
|
0 \text{ pour $n$ pair} \\
|
|
|
|
\frac{4}{(n\pi)^2} \text{ pour $n$ impair} \\
|
|
|
|
\end{array}
|
|
|
|
\right.
|
|
|
|
\end{align*}
|
|
|
|
|
2022-01-04 13:29:34 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\draw[help lines, dashed] (-6,-1) grid (6,3);
|
|
|
|
\draw[-latex] (-6,0) -- (6,0) node[below]{$f$};
|
|
|
|
\draw[-latex] (0,-1) -- (0,3) node[left]{$S_x(f)$};
|
|
|
|
% j'ajoute 2 pour la visibilité
|
|
|
|
\draw[-latex,very thick, teal] (-5, 0) -- (-5, 2+0.016211389382774045);
|
|
|
|
\draw[-latex,very thick, teal] (-3, 0) -- (-3, 2+0.04503163717437234);
|
|
|
|
\draw[-latex,very thick, teal] (-1, 0) -- (-1, 2+0.4052847345693511);
|
|
|
|
\draw[-latex,very thick, teal] (0, 0) -- (0, 2+0.5);
|
|
|
|
\draw[-latex,very thick, teal] (1, 0) -- (1, 2+0.4052847345693511);
|
|
|
|
\draw[-latex,very thick, teal] (3, 0) -- (3, 2+0.04503163717437234);
|
|
|
|
\draw[-latex,very thick, teal] (5, 0) -- (5, 2+0.016211389382774045);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2022-01-04 11:12:31 +01:00
|
|
|
\subsubsection{Pour $x_2$}
|
|
|
|
\begin{equation*}
|
|
|
|
c_0 = a_0 = r
|
|
|
|
\end{equation*}
|
|
|
|
\begin{align*}
|
|
|
|
c_n &= \frac{1}{2}\frac{2\sin(n\pi r)}{n\pi} \\
|
|
|
|
&= \frac{\sin(n\pi r)}{n\pi}
|
|
|
|
\end{align*}
|
|
|
|
\begin{align*}
|
|
|
|
S_{x_2}(f) &= \sum_{n=-\infty}^{+\infty} \left|\frac{\sin(n\pi r)}{n\pi}\right|^2 \\
|
|
|
|
\text{pour } r=\frac{1}{2} &\implies
|
|
|
|
\sum_{n=-\infty}^{+\infty} \left|\frac{\sin(\frac{n\pi}{2})}{n\pi}\right|^2 \\
|
|
|
|
&= \sum_{n=-\infty}^{+\infty}\frac{1}{(n\pi)^2} \\
|
|
|
|
\text{pour } r=\frac{1}{3} &\implies
|
|
|
|
\sum_{n=-\infty}^{+\infty} \left|\frac{\sin(\frac{n\pi}{3})}{n\pi}\right|^2 \\
|
|
|
|
\text{pour } r=\frac{1}{4} &\implies
|
|
|
|
\sum_{n=-\infty}^{+\infty} \left|\frac{\sin(\frac{n\pi}{4})}{n\pi}\right|^2 \\
|
|
|
|
\end{align*}
|
2022-01-04 13:29:34 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\draw[help lines, dashed] (-6,-1) grid (6,3);
|
|
|
|
\draw[-latex] (-6,0) -- (6,0) node[below]{$f$};
|
|
|
|
\draw[-latex] (0,-1) -- (0,3) node[left]{$S_x(f)$};
|
|
|
|
|
|
|
|
\draw[-latex,very thick, teal] (-6, 0) -- (-6, 3.700508937884072e-32);
|
|
|
|
\draw[-latex,very thick, teal] (-5, 0) -- (-5, 0.3947841760435743);
|
|
|
|
\draw[-latex,very thick, teal] (-4, 0) -- (-4, 3.700508937884072e-32);
|
|
|
|
\draw[-latex,very thick, teal] (-3, 0) -- (-3, 1.0966227112321507);
|
|
|
|
\draw[-latex,very thick, teal] (-2, 0) -- (-2, 3.700508937884072e-32);
|
|
|
|
\draw[-latex,very thick, teal] (-1, 0) -- (-1, 9.869604401089358);
|
|
|
|
\draw[-latex,very thick, teal] (0, 0) -- (0, 0.5);
|
|
|
|
\draw[-latex,very thick, teal] (1, 0) -- (1, 9.869604401089358);
|
|
|
|
\draw[-latex,very thick, teal] (2, 0) -- (2, 3.700508937884072e-32);
|
|
|
|
\draw[-latex,very thick, teal] (3, 0) -- (3, 1.0966227112321507);
|
|
|
|
\draw[-latex,very thick, teal] (4, 0) -- (4, 3.700508937884072e-32);
|
|
|
|
\draw[-latex,very thick, teal] (5, 0) -- (5, 0.3947841760435743);
|
|
|
|
\draw[-latex,very thick, teal] (6, 0) -- (6, 3.700508937884072e-32);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
2022-01-04 00:23:50 +01:00
|
|
|
\end{document}
|