This commit is contained in:
flyingscorpio@arch-desktop 2022-01-04 00:23:50 +01:00
parent 9d835b7cf8
commit 2b747936a2
2 changed files with 73 additions and 1 deletions

View file

@ -1,6 +1,6 @@
timestamp=$(shell date +%Y-%m-%d_%H:%M)
all: td1
all: td1 tp1
td1: td1.tex
@latexmk -pdf td1.tex
@ -11,5 +11,14 @@ td1: td1.tex
echo "Updated"; \
fi
tp1: tp1.tex
@latexmk -pdf tp1.tex
@if ! cmp --silent build/tp1.pdf tp1_*.pdf; then \
touch tp1_tmp.pdf; \
rm tp1*.pdf; \
cp build/tp1.pdf tp1_${timestamp}.pdf; \
echo "Updated"; \
fi
clean:
@rm -rf build 2>/dev/null

View file

@ -0,0 +1,63 @@
\documentclass[a4paper,french,12pt]{article}
\title{
Théorie du signal --- TP1
\\ \large Décomposition en Série de Fourier
}
\author{}
\date{Dernière compilation~: \today{} à \currenttime}
\usepackage{../../cours}
\usepackage{enumitem}
\usepackage{xfrac}
\usepackage{tikz}
\begin{document}
\maketitle
\section{Partie théorique}
\subsection{Coefficients de Fourier}
Donner l'expression de la DSF réelle des signaux suivants $T_0$-périodiques~:
\begin{align*}
x_1(t) = 1 - \frac{2}{T_0} |t| \quad \forall t \in \left[-\frac{T_0}{2}; \frac{T_0}{2}\right]
\end{align*}
avec $T_0 = 0.5s$.
$x_1$ est paire, donc les $b_n$ sont nuls.
\begin{align*}
a_0 &= \frac{1}{T_0} \int_{-\sfrac{T_0}{2}}^{\sfrac{T_0}{2}} 1 - \frac{2}{T_0}|t| \dif t \\
&= \frac{2}{T_0} \int_0^{\sfrac{T_0}{2}} 1 \dif t - \frac{2}{T_0} \int_0^{\sfrac{T_0}{2}} \frac{2}{T_0}|t| \dif t \\
&= \frac{2}{T_0} [t]_0^{\sfrac{T_0}{2}} - \frac{4}{T_0^2} \left[\frac{t^2}{2}\right]_0^{\sfrac{T_0}{2}} \\
&= 1 - \frac{4T_0^2}{8T_0^2} \\ \\
a_0 &= \frac{1}{2}
\end{align*}
\begin{align*}
a_n &= \frac{2}{T_0} \int_{(T_0)} \left(1-\frac{2}{T_0}|t|\right)\cos(n\omega_0 t) \dif t \\
&= \frac{4}{T_0} \int_0^{\frac{T_0}{2}} 1-\frac{2}{T_0}|t| \dif t \int_0^{\frac{T_0}{2}}\cos(n\omega_0 t) \dif t \\
&= \frac{4}{T_0}\left(\frac{T_0}{2} - \frac{2}{T_0}\left[\frac{t^2}{2}\right]_0^{\sfrac{T_0}{2}}\right) \left[\frac{\sin(n\omega_0 t)}{n\omega_0}\right]_0^{\sfrac{T_0}{2}} \\
&= \left(\frac{4T_0}{2T_0} - \frac{8T_0^2}{8T_0^2}\right) \frac{\sin(n\omega_0\frac{T_0}{2})}{n\omega_0} \\
&= 1 \cdot \frac{\sin(\frac{2\pi n}{2})}{\frac{2\pi n}{T_0}} \\
&= \frac{\sin(n\pi)}{\frac{2\pi n}{T_0}} \\
a_n &= 0
\end{align*}
\begin{align*}
S_x(t) &= a_0 + \sum_{n=0}^{+\infty} a_n\cos(n\omega_0 t) \\
&= \frac{1}{2}
\end{align*}
\begin{align*}
x_2(t) =
\left\{
\begin{array}{l}
1 \quad \forall t \in \left[-\frac{T_0 r}{2}; \frac{T_0 r}{2}\right] \\
0 \quad \text{sinon}
\end{array}
\right.
\end{align*}
avec $r$ le rapport cyclique tel que $r < 1$ et $T_0 = 0.5s$.
\end{document}