efrei/theorie-signal/exercices/tp1.tex

72 lines
2.2 KiB
TeX
Raw Normal View History

2022-01-04 00:23:50 +01:00
\documentclass[a4paper,french,12pt]{article}
\title{
Théorie du signal --- TP1
\\ \large Décomposition en Série de Fourier
}
\author{}
\date{Dernière compilation~: \today{} à \currenttime}
\usepackage{../../cours}
\usepackage{enumitem}
\usepackage{xfrac}
\usepackage{tikz}
\begin{document}
\maketitle
\section{Partie théorique}
\subsection{Coefficients de Fourier}
Donner l'expression de la DSF réelle des signaux suivants $T_0$-périodiques~:
\begin{align*}
x_1(t) = 1 - \frac{2}{T_0} |t| \quad \forall t \in \left[-\frac{T_0}{2}; \frac{T_0}{2}\right]
\end{align*}
avec $T_0 = 0.5s$.
$x_1$ est paire, donc les $b_n$ sont nuls.
\begin{align*}
a_0 &= \frac{1}{T_0} \int_{-\sfrac{T_0}{2}}^{\sfrac{T_0}{2}} 1 - \frac{2}{T_0}|t| \dif t \\
&= \frac{2}{T_0} \int_0^{\sfrac{T_0}{2}} 1 \dif t - \frac{2}{T_0} \int_0^{\sfrac{T_0}{2}} \frac{2}{T_0}|t| \dif t \\
&= \frac{2}{T_0} [t]_0^{\sfrac{T_0}{2}} - \frac{4}{T_0^2} \left[\frac{t^2}{2}\right]_0^{\sfrac{T_0}{2}} \\
&= 1 - \frac{4T_0^2}{8T_0^2} \\ \\
a_0 &= \frac{1}{2}
\end{align*}
\begin{align*}
a_n &= \frac{2}{T_0} \int_{(T_0)} \left(1-\frac{2}{T_0}|t|\right)\cos(n\omega_0 t) \dif t \\
2022-01-04 09:28:00 +01:00
\text{IPP avec }
&\left\{
\begin{array}{l}
u = 1 - \frac{2}{T_0}|t| \quad\implies
u' = -\frac{2}{T_0} \\ \\
v' = \cos(n\omega_0 t) \quad\implies
v = \frac{\sin(n\omega_0 t)}{n\omega_0}
\\
\end{array}
\right.\\
a_n &= \frac{4}{T_0}\left[
1 - \frac{2}{T_0}|t|
\frac{\sin(n\omega_0 t)}{n\omega_0}
\right]_0^{T_0/2}
- \int_0^{\sfrac{T_0}{2}} -\frac{2}{T_0}\frac{\sin(n\omega_0 t)}{n\omega_0} \dif t
2022-01-04 00:23:50 +01:00
\end{align*}
\begin{align*}
S_x(t) &= a_0 + \sum_{n=0}^{+\infty} a_n\cos(n\omega_0 t) \\
\end{align*}
\begin{align*}
x_2(t) =
\left\{
\begin{array}{l}
1 \quad \forall t \in \left[-\frac{T_0 r}{2}; \frac{T_0 r}{2}\right] \\
0 \quad \text{sinon}
\end{array}
\right.
\end{align*}
avec $r$ le rapport cyclique tel que $r < 1$ et $T_0 = 0.5s$.
\end{document}