Start correction for an

This commit is contained in:
flyingscorpio@pinebookpro 2022-01-04 09:28:00 +01:00
parent 2b747936a2
commit a5743cd9d9

View file

@ -36,17 +36,25 @@ Théorie du signal --- TP1
\begin{align*}
a_n &= \frac{2}{T_0} \int_{(T_0)} \left(1-\frac{2}{T_0}|t|\right)\cos(n\omega_0 t) \dif t \\
&= \frac{4}{T_0} \int_0^{\frac{T_0}{2}} 1-\frac{2}{T_0}|t| \dif t \int_0^{\frac{T_0}{2}}\cos(n\omega_0 t) \dif t \\
&= \frac{4}{T_0}\left(\frac{T_0}{2} - \frac{2}{T_0}\left[\frac{t^2}{2}\right]_0^{\sfrac{T_0}{2}}\right) \left[\frac{\sin(n\omega_0 t)}{n\omega_0}\right]_0^{\sfrac{T_0}{2}} \\
&= \left(\frac{4T_0}{2T_0} - \frac{8T_0^2}{8T_0^2}\right) \frac{\sin(n\omega_0\frac{T_0}{2})}{n\omega_0} \\
&= 1 \cdot \frac{\sin(\frac{2\pi n}{2})}{\frac{2\pi n}{T_0}} \\
&= \frac{\sin(n\pi)}{\frac{2\pi n}{T_0}} \\
a_n &= 0
\text{IPP avec }
&\left\{
\begin{array}{l}
u = 1 - \frac{2}{T_0}|t| \quad\implies
u' = -\frac{2}{T_0} \\ \\
v' = \cos(n\omega_0 t) \quad\implies
v = \frac{\sin(n\omega_0 t)}{n\omega_0}
\\
\end{array}
\right.\\
a_n &= \frac{4}{T_0}\left[
1 - \frac{2}{T_0}|t|
\frac{\sin(n\omega_0 t)}{n\omega_0}
\right]_0^{T_0/2}
- \int_0^{\sfrac{T_0}{2}} -\frac{2}{T_0}\frac{\sin(n\omega_0 t)}{n\omega_0} \dif t
\end{align*}
\begin{align*}
S_x(t) &= a_0 + \sum_{n=0}^{+\infty} a_n\cos(n\omega_0 t) \\
&= \frac{1}{2}
\end{align*}
\begin{align*}