64 lines
2.3 KiB
TeX
64 lines
2.3 KiB
TeX
|
\documentclass[a4paper,french,12pt]{article}
|
||
|
|
||
|
\title{
|
||
|
Théorie du signal --- TP1
|
||
|
\\ \large Décomposition en Série de Fourier
|
||
|
}
|
||
|
\author{}
|
||
|
\date{Dernière compilation~: \today{} à \currenttime}
|
||
|
|
||
|
\usepackage{../../cours}
|
||
|
\usepackage{enumitem}
|
||
|
\usepackage{xfrac}
|
||
|
\usepackage{tikz}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\maketitle
|
||
|
|
||
|
\section{Partie théorique}
|
||
|
|
||
|
\subsection{Coefficients de Fourier}
|
||
|
Donner l'expression de la DSF réelle des signaux suivants $T_0$-périodiques~:
|
||
|
\begin{align*}
|
||
|
x_1(t) = 1 - \frac{2}{T_0} |t| \quad \forall t \in \left[-\frac{T_0}{2}; \frac{T_0}{2}\right]
|
||
|
\end{align*}
|
||
|
avec $T_0 = 0.5s$.
|
||
|
|
||
|
$x_1$ est paire, donc les $b_n$ sont nuls.
|
||
|
\begin{align*}
|
||
|
a_0 &= \frac{1}{T_0} \int_{-\sfrac{T_0}{2}}^{\sfrac{T_0}{2}} 1 - \frac{2}{T_0}|t| \dif t \\
|
||
|
&= \frac{2}{T_0} \int_0^{\sfrac{T_0}{2}} 1 \dif t - \frac{2}{T_0} \int_0^{\sfrac{T_0}{2}} \frac{2}{T_0}|t| \dif t \\
|
||
|
&= \frac{2}{T_0} [t]_0^{\sfrac{T_0}{2}} - \frac{4}{T_0^2} \left[\frac{t^2}{2}\right]_0^{\sfrac{T_0}{2}} \\
|
||
|
&= 1 - \frac{4T_0^2}{8T_0^2} \\ \\
|
||
|
a_0 &= \frac{1}{2}
|
||
|
\end{align*}
|
||
|
|
||
|
\begin{align*}
|
||
|
a_n &= \frac{2}{T_0} \int_{(T_0)} \left(1-\frac{2}{T_0}|t|\right)\cos(n\omega_0 t) \dif t \\
|
||
|
&= \frac{4}{T_0} \int_0^{\frac{T_0}{2}} 1-\frac{2}{T_0}|t| \dif t \int_0^{\frac{T_0}{2}}\cos(n\omega_0 t) \dif t \\
|
||
|
&= \frac{4}{T_0}\left(\frac{T_0}{2} - \frac{2}{T_0}\left[\frac{t^2}{2}\right]_0^{\sfrac{T_0}{2}}\right) \left[\frac{\sin(n\omega_0 t)}{n\omega_0}\right]_0^{\sfrac{T_0}{2}} \\
|
||
|
&= \left(\frac{4T_0}{2T_0} - \frac{8T_0^2}{8T_0^2}\right) \frac{\sin(n\omega_0\frac{T_0}{2})}{n\omega_0} \\
|
||
|
&= 1 \cdot \frac{\sin(\frac{2\pi n}{2})}{\frac{2\pi n}{T_0}} \\
|
||
|
&= \frac{\sin(n\pi)}{\frac{2\pi n}{T_0}} \\
|
||
|
a_n &= 0
|
||
|
\end{align*}
|
||
|
|
||
|
\begin{align*}
|
||
|
S_x(t) &= a_0 + \sum_{n=0}^{+\infty} a_n\cos(n\omega_0 t) \\
|
||
|
&= \frac{1}{2}
|
||
|
\end{align*}
|
||
|
|
||
|
\begin{align*}
|
||
|
x_2(t) =
|
||
|
\left\{
|
||
|
\begin{array}{l}
|
||
|
1 \quad \forall t \in \left[-\frac{T_0 r}{2}; \frac{T_0 r}{2}\right] \\
|
||
|
0 \quad \text{sinon}
|
||
|
\end{array}
|
||
|
\right.
|
||
|
\end{align*}
|
||
|
avec $r$ le rapport cyclique tel que $r < 1$ et $T_0 = 0.5s$.
|
||
|
|
||
|
\end{document}
|