2021-10-04 09:48:09 +02:00
\documentclass [a4paper,french,11pt] { article}
2021-09-19 14:50:19 +02:00
\title { Analyse --- Exercices}
\author { }
\date { Dernière compilation~: \today { } à \currenttime }
\usepackage { ../../cours}
\usepackage { enumitem}
\usepackage { xfrac}
\begin { document}
\maketitle
\section { Équations différentielles d'ordre 1}
\paragraph { $ ( E _ 1 ) $ }
$ y' - 2 y = x ^ 2 $
\begin { enumerate} [label=\alph * )]
\item Solution homogène
\begin { align*}
r = 2 \implies y_ 0 = \lambda e^ { 2x}
\end { align*}
\item Solution particulière
\begin { align*}
\left \{
\begin { array} { l}
y_ 1 = ax^ 2 + bx + c \\
y_ 1' = 2ax + b \\
\end { array}
\right .
2021-09-19 19:57:14 +02:00
\end { align*}
\begin { align*}
2021-09-20 08:39:41 +02:00
\text { Dans } (E_ 1)
& \implies
2021-09-19 14:50:19 +02:00
2ax + b - 2(ax^ 2 + bx + c) = x^ 2 \\
2021-09-20 08:39:41 +02:00
& \iff
2021-09-19 14:50:19 +02:00
\left \{
\begin { array} { l}
-2a = 1 \\
2a - 2b = 0 \\
b - 2c = 0 \\
\end { array}
\right .
2021-09-20 08:39:41 +02:00
\iff
2021-09-19 14:50:19 +02:00
\left \{
\begin { array} { l}
a = \sfrac { -1} { 2} \\
b = \sfrac { -1} { 2} \\
c = \sfrac { -1} { 4} \\
\end { array}
2021-09-19 19:57:14 +02:00
\right .
\end { align*}
\begin { align*}
2021-09-19 14:50:19 +02:00
\implies y_ 1 = -\frac { 1} { 2} x^ 2 -\frac { 1} { 2} x -\frac { 1} { 4}
\end { align*}
\item Solution générale
\begin { equation*}
y = y_ 0 + y_ 1 = \boxed { -\frac { 1} { 2} x^ 2 -\frac { 1} { 2} x -\frac { 1} { 4} + \lambda e^ { 2x} }
\end { equation*}
\end { enumerate}
\paragraph { $ ( E _ 2 ) $ }
$ 3 y' - 9 y = 7 e ^ { 3 x } $
\begin { enumerate} [label=\alph * )]
\item Solution homogène
\begin { align*}
r = 3 \implies y_ 0 = \lambda e^ { 3x}
\end { align*}
\item Solution particulière
\begin { align*}
\left \{
\begin { array} { l}
y_ 1 = ax e^ { 3x} \\
y_ 1' = ae^ { 3x} + 3axe^ { 3x} = (3ax + a)e^ { 3x} \\
\end { array}
\right .
2021-09-19 19:57:14 +02:00
\end { align*}
\begin { align*}
2021-09-20 08:39:41 +02:00
\text { Dans } (E_ 2)
& \implies 3(3ax + a)e^ { 3x} - 9axe^ { 3x} = 7e^ { 3x} \\
& \iff (9ax + 3a)e^ { 3x} - 9axe^ { 3x} = 7e^ { 3x} \\
& \iff 9ax + 3a - 9ax = 7 \\
& \iff 3a = 7 \\
& \iff a = \frac { 7} { 3}
2021-09-19 19:57:14 +02:00
\end { align*}
\begin { align*}
2021-09-19 14:50:19 +02:00
\implies y_ 1 = \frac { 7} { 3} xe^ { 3x}
\end { align*}
\item Solution générale
\begin { equation*}
y = y_ 0 + y_ 1 = \lambda e^ { 3x} + \frac { 7} { 3} xe^ { 3x} = \boxed { (\frac { 7} { 3} x + \lambda )e^ { 3x} }
\end { equation*}
\end { enumerate}
\paragraph { $ ( E _ 3 ) $ }
$ 2 y' - 4 y = 5 e ^ { 3 x } $
\begin { enumerate} [label=\alph * )]
\item Solution homogène
\begin { align*}
r = 2 \implies y_ 0 = \lambda e^ { 2x}
\end { align*}
\item Solution particulière
\begin { align*}
\left \{
\begin { array} { l}
y_ 1 = ae^ { 3x} \\
y_ 1' = 3ae^ { 3x} \\
\end { array}
\right .
2021-09-19 19:57:14 +02:00
\end { align*}
\begin { align*}
2021-09-20 08:39:41 +02:00
\text { Dans } (E_ 3)
& \iff 6ae^ { 3x} - 4ae^ { 3x} = 5e^ { 3x} \\
& \iff 2a = 5
\iff a = \frac { 5} { 2}
2021-09-19 19:57:14 +02:00
\end { align*}
\begin { align*}
2021-09-19 14:50:19 +02:00
\implies y_ 1 = \frac { 5} { 2} e^ { 3x}
\end { align*}
\item Solution générale
\begin { equation*}
y = y_ 0 + y_ 1 = \boxed { \lambda e^ { 2x} + \frac { 5} { 2} e^ { 3x} }
\end { equation*}
\end { enumerate}
\paragraph { $ ( E _ 4 ) $ }
$ y' + 4 y = 3 \cos ( 2 x ) $
\begin { enumerate} [label=\alph * )]
\item Solution homogène
\begin { align*}
r = -4 \implies y_ 0 = \lambda e^ { -4x}
\end { align*}
\item Solution particulière
\begin { align*}
\left \{
\begin { array} { l}
y_ 1 = a\cos (2x) + b\sin (2x) \\
y_ 1' = -2a\sin (2x) + 2b\cos (2x) \\
\end { array}
\right .
\end { align*}
\begin { align*}
2021-09-20 08:39:41 +02:00
\text { Dans } (E_ 4)
& \implies -2a\sin (2x) + 2b\cos (2x) + 4(a\cos (2x) + b\sin (2x)) = 3\cos (2x) \\
& \iff
2021-09-19 14:50:19 +02:00
\left \{
\begin { array} { l}
4a + 2b = 3 \\
4b - 2a = 0 \\
\end { array}
\right .
2021-09-20 08:39:41 +02:00
\iff
2021-09-19 14:50:19 +02:00
\left \{
\begin { array} { l}
4a + 2b = 3 \\
4a - 8b = 0 \\
\end { array}
\right .
2021-09-20 08:39:41 +02:00
\iff
2021-09-19 19:57:14 +02:00
\left \{
\begin { array} { l}
10b = 3 \\
4b - 2a = 0 \\
\end { array}
\right . \\
2021-09-20 08:39:41 +02:00
& \iff
2021-09-19 19:57:14 +02:00
\left \{
\begin { array} { l}
b = \sfrac { 3} { 10} \\
a = \sfrac { 12} { 20} = \sfrac { 3} { 5} \\
\end { array}
\right .
\end { align*}
\begin { align*}
\implies y_ 1 = \frac { 3} { 5} \cos (2x) + \frac { 3} { 10} \sin (2x)
2021-09-19 14:50:19 +02:00
\end { align*}
2021-09-19 19:57:14 +02:00
\item Solution générale
\begin { equation*}
y = y_ 0 + y_ 1 = \boxed { \lambda e^ { -4x} + \frac { 3} { 5} \cos (2x) + \frac { 3} { 10} \sin (2x)}
\end { equation*}
2021-09-19 14:50:19 +02:00
\end { enumerate}
\section { Équations différentielles d'ordre 2}
2021-09-19 20:01:53 +02:00
\paragraph { $ ( E _ 5 ) $ }
$ y'' - 7 y' + 10 y = ( x + 3 ) e ^ { 2 x } $
2021-09-20 09:57:35 +02:00
\begin { enumerate} [label=\alph * )]
\item Solution homogène
\begin { align*}
r^ 2 - 7r + 10 = 0
\implies \Delta = 9
\implies
\left \{
\begin { array} { l}
r_ 1 = \frac { 7 - 3} { 2} = 2 \\ \\
r_ 2 = \frac { 7 + 3} { 2} = 5 \\
\end { array}
\right .
\end { align*}
\begin { align*}
\implies
y_ 0 = \lambda e^ { 2x} + \mu e^ { 5x}
\end { align*}
\item Solution particulière
2021-09-20 11:25:04 +02:00
second membre~: $ ( x + 3 ) e ^ { \alpha x } $ avec $ \alpha = 2 $ $ \implies \alpha $ racine de l'équation caractéristique.
2021-09-20 09:57:35 +02:00
\begin { align*}
& \left \{
\begin { array} { l}
y_ 1 = xe^ { 2x} (ax + b) \\
y_ 1' = (2x + 1)e^ { 2x} (ax + b) + axe^ { 2x} \\
y_ 1'' = (4ax + 2a + 2b)e^ { 2x} + (4ax^ 2 + 4ax + 4bx + 2b)e^ { 2x} \\
\end { array}
\right . \\
\implies
& \left \{
\begin { array} { l}
y_ 1 = xe^ { 2x} (ax + b) \\
y_ 1' = (2ax^ 2 + 2ax + 2bx + b)e^ { 2x} \\
y_ 1'' = (4ax^ 2 + 8ax + 4bx + 2a + 4b)e^ { 2x} \\
\end { array}
\right .
\end { align*}
Dans $ ( E _ 5 ) $ ~:
$ ( 4 ax ^ 2 + 8 ax + 4 bx + 2 a + 4 b ) e ^ { 2 x } - 7 ( 2 ax ^ 2 + 2 ax + 2 bx + b ) e ^ { 2 x } + 10 ( ax + b ) xe ^ { 2 x } = ( x + 3 ) e ^ { 2 x } $
\begin { align*}
\implies
-6ax + 2a - 3b = x + 3
\implies
\left \{
\begin { array} { l}
-6a = 1 \\
2a - 3b = 3 \\
\end { array}
\right .
\implies
\left \{
\begin { array} { l}
a = \frac { -1} { 6} \\ \\
b = \frac { -10} { 9} \\
\end { array}
\right .
\end { align*}
\begin { align*}
\implies
y_ 1 = xe^ { 2x} (-\frac { 1} { 6} x - \frac { 10} { 9} )
\end { align*}
\item Solution générale
\begin { equation*}
y = y_ 0 + y_ 1 = \boxed { \lambda e^ { 2x} + \mu e^ { 5x} + xe^ { 2x} (-\frac { 1} { 6} x - \frac { 10} { 9} )}
\end { equation*}
\end { enumerate}
2021-09-19 20:01:53 +02:00
\paragraph { $ ( E _ 6 ) $ }
$ y'' - y = x ^ 3 $
2021-09-20 11:25:04 +02:00
\begin { enumerate} [label=\alph * )]
\item Solution homogène
\begin { align*}
r^ 2 - 1 = 0
\implies \Delta = 4
\implies
\left \{
\begin { array} { l}
r_ 1 = \frac { 0 - 2} { 2} = -1 \\ \\
r_ 2 = \frac { 0 + 2} { 2} = 1 \\
\end { array}
\right .
\end { align*}
\begin { align*}
\implies
y_ 0 = \lambda e^ { -x} + \mu e^ { x}
\end { align*}
\item Solution particulière
second membre~: $ x ^ 3 e ^ { \alpha x } $ avec $ \alpha = 0 $ $ \implies \alpha $ non racine de l'équation caractéristique.
\begin { align*}
& \left \{
\begin { array} { l}
y_ 1 = ax^ 3 + bx^ 2 + cx + d \\
y_ 1' = 3ax^ 2 + 2bx + c \\
y_ 1'' = 6ax + 2b \\
\end { array}
\right .
\end { align*}
Dans $ ( E _ 6 ) $ ~:
$ 6 ax + 2 b - ax ^ 3 - bx ^ 2 - cx - d = x ^ 3 $
\begin { align*}
\implies
-ax^ 3 - bx^ 2 + 6ax - cx + 2b - d = x^ 3
\implies
\left \{
\begin { array} { l}
-a = 1 \\
-b = 0 \\
6a - c = 0 \\
2b - d = 0 \\
\end { array}
\right .
\implies
\left \{
\begin { array} { l}
a = -1 \\
b = 0 \\
c = -6 \\
d = 0 \\
\end { array}
\right .
\end { align*}
\begin { align*}
\implies
y_ 1 = -x^ 3 - 6x
\end { align*}
\item Solution générale
\begin { equation*}
y = y_ 0 + y_ 1 = \boxed { \lambda e^ { -x} + \mu e^ { x} - x^ 3 - 6x}
\end { equation*}
\end { enumerate}
2021-09-19 20:01:53 +02:00
\paragraph { $ ( E _ 7 ) $ }
$ y'' + y = \cos { x } $
2021-09-21 15:54:45 +02:00
\begin { enumerate} [label=\alph * )]
\item Solution homogène
\begin { align*}
r^ 2 + 1 = 0
\implies \Delta = -4
\implies
\left \{
\begin { array} { l}
r_ 1 = \frac { 0 - 2i} { 2} \\ \\
r_ 2 = \frac { 0 + 2i} { 2} \\
\end { array}
\right .
\implies
\left \{
\begin { array} { l}
\alpha = 0 \\
\beta = 1
\end { array}
\right .
\end { align*}
\begin { align*}
\implies
y_ 0 = e^ { 0} (\lambda \cos { x} + \mu \sin { x} )
= \lambda \cos { x} + \mu \sin { x}
\end { align*}
\item Solution particulière
2021-09-27 09:03:03 +02:00
second membre~: $ e ^ { \alpha x } ( P _ 0 ( x ) \cos { \beta x } + 0 \times \sin { \beta x } ) $ avec $ \alpha = 0 , \beta = 1 , P _ 0 = 1 $ $ \implies \alpha + i \beta $ racine de l'équation caractéristique.
2021-09-21 15:54:45 +02:00
\begin { align*}
y_ 1 & = xe^ { \alpha x} (a\cos { \beta x} + b\sin { \beta x} ) \\
& = x(a\cos { x} + b\sin { x} ) \\
\implies
& \left \{
\begin { array} { l}
y_ 1 = x(a\cos { x} + b\sin { x} ) \\
y_ 1' = a\cos { x} + b\sin { x} - x(a\sin { x} - b\cos { x} ) \\
y_ 1'' = -a\sin { x} + b\cos { x} - a\sin { x} + b\cos { x} - x(a\cos { x} + b\sin { x} ) \\
\end { array}
\right . \\
\implies
& \left \{
\begin { array} { l}
y_ 1 = x(a\cos { x} + b\sin { x} ) \\
y_ 1' = a\cos { x} + b\sin { x} - x(a\sin { x} - b\cos { x} ) \\
y_ 1'' = -2a\sin { x} + 2b\cos { x} - x(a\cos { x} + b\sin { x} ) \\
\end { array}
\right .
\end { align*}
Dans $ ( E _ 7 ) $ ~:
\begin { align*}
-2a\sin { x} + 2b\cos { x} - x(a\cos { x} + b\sin { x} ) + x(a\cos { x} + b\sin { x} ) = \cos { x} \\
\iff
-2a\sin { x} + 2b\cos { x} = \cos { x} \\
\iff
2b\cos { x} - 2a\sin { x} = \cos { x} \\
\implies
\left \{
\begin { array} { l}
2b = 1 \\
-a = 0 \\
\end { array}
\right .
\implies
\left \{
\begin { array} { l}
a = 0 \\
2021-09-23 08:20:51 +02:00
b = \frac { 1} { 2} \\
2021-09-21 15:54:45 +02:00
\end { array}
\right .
\end { align*}
\begin { align*}
\implies
y_ 1 = \frac { x\sin { x} } { 2} \\
\end { align*}
\item Solution générale
\begin { equation*}
y = y_ 0 + y_ 1 = \boxed { \lambda \cos { x} + \mu \sin { x} + \frac { x\sin { x} } { 2} }
\end { equation*}
\end { enumerate}
2021-09-19 20:01:53 +02:00
\paragraph { $ ( E _ 8 ) $ }
$ y'' - 4 y = ( - 4 x + 3 ) e ^ { 2 x } $
2021-09-22 20:23:56 +02:00
\begin { enumerate} [label=\alph * )]
\item Solution homogène
\begin { align*}
r^ 2 - 4 = 0
\implies \Delta = 16
\implies
\left \{
\begin { array} { l}
r_ 1 = \frac { 0 - 4} { 2} = -2 \\ \\
r_ 2 = \frac { 0 + 4} { 2} = 2 \\
\end { array}
\right .
\end { align*}
\begin { align*}
\implies
y_ 0 = \lambda e^ { -2x} + \mu e^ { 2x}
\end { align*}
\item Solution particulière
second membre~: $ ( - 4 x + 3 ) e ^ { \alpha x } $ avec $ \alpha = 2 $ $ \implies \alpha $ racine de l'équation caractéristique.
\begin { align*}
& \left \{
\begin { array} { l}
y_ 1 = xe^ { 2x} (ax + b) \\
y_ 1' = (2x + 1)e^ { 2x} (ax + b) + axe^ { 2x} \\
y_ 1'' = (4ax + 2a + 2b)e^ { 2x} + (4ax^ 2 + 4ax + 4bx + 2b)e^ { 2x} \\
\end { array}
\right . \\
\implies
& \left \{
\begin { array} { l}
y_ 1 = xe^ { 2x} (ax + b) \\
y_ 1' = (2ax^ 2 + 2ax + 2bx + b)e^ { 2x} \\
y_ 1'' = (4ax^ 2 + 8ax + 4bx + 2a + 4b)e^ { 2x} \\
\end { array}
\right .
\end { align*}
Dans $ ( E _ 8 ) $ ~:
$ ( 4 ax ^ 2 + 8 ax + 4 bx + 2 a + 4 b ) e ^ { 2 x } - 4 x ( ax + b ) e ^ { 2 x } = ( - 4 x + 3 ) e ^ { 2 x } $
\begin { align*}
\implies
8ax + 2a + 4b = -4x + 3
\implies
\left \{
\begin { array} { l}
8a = -4 \\
2a + 4b = 3 \\
\end { array}
\right .
\implies
\left \{
\begin { array} { l}
a = \frac { -1} { 2} \\
b = 1 \\
\end { array}
\right .
\end { align*}
\begin { align*}
\implies
y_ 1 = xe^ { 2x} (\frac { -x} { 2} + 1)
\end { align*}
\item Solution générale
\begin { equation*}
y = y_ 0 + y_ 1 = \boxed { \lambda e^ { -2x} + \mu e^ { 2x} + xe^ { 2x} (\frac { -x} { 2} + 1)}
\end { equation*}
\end { enumerate}
2021-10-04 09:48:09 +02:00
\section { Intégrales généralisées}
\subsection { Exercice 1}
Étudier la convergence des intégrales généralisées suivantes.
\paragraph { $ ( I _ 1 ) $ }
2021-10-04 22:08:27 +02:00
$ \int _ 1 ^ { + \infty } \frac { 2 x + x ^ 3 } { x ^ 3 + x ^ 4 } \dif x $
2021-10-04 09:48:09 +02:00
\begin { align*}
\forall x \in [1; +\infty [\quad \frac { 2x + x^ 3} { x^ 3 + x^ 4} \geq 0 \\ \\
\frac { 2x + x^ 3} { x^ 3 + x^ 4} = \frac { x^ 3(\frac { 2} { x^ 2} + 1)} { x^ 4(\frac { 1} { x} + 1)} \sim \frac { x^ 3} { x^ 4} \sim \frac { 1} { x} \\
2021-10-04 22:08:27 +02:00
\text { Or } \int _ 1^ { +\infty } \frac { 1} { x} \dif x \text { diverge donc $ I _ 1 $ diverge par équivalence.} \\
2021-10-04 09:48:09 +02:00
\end { align*}
\paragraph { $ ( I _ 2 ) $ }
2021-10-04 22:08:27 +02:00
$ \int _ 0 ^ { + \infty } \frac { x \sqrt { x } } { x ^ 2 \sqrt [ 3 ] { x } + 4 } \dif x $
2021-10-04 09:48:09 +02:00
\begin { align*}
\forall x \in [0; +\infty [\quad \frac{x\sqrt{x}}{x^2 \sqrt[3] { x} + 4} \geq 0 \\ \\
\frac { x\sqrt { x} } { x^ 2 \sqrt [3] { x} + 4}
= \frac { x^ { 1+\frac { 1} { 2} } } { x^ { 2+\frac { 1} { 3} } (1 + \frac { 4} { x^ { \frac { 7} { 3} } } )}
\sim \frac { x^ { 1+\frac { 1} { 2} } } { x^ { \frac { 7} { 3} } }
\sim x^ { \frac { 3} { 2} - \frac { 7} { 3} }
\sim x^ { -\frac { 5} { 6} }
\sim \frac { 1} { x^ { \frac { 5} { 6} } } \\
2021-10-04 22:08:27 +02:00
\text { Or } \int _ 1^ { +\infty } \frac { 1} { x^ { \frac { 5} { 6} } } \dif x \text { diverge donc $ I _ 2 $ diverge par équivalence.} \\
2021-10-04 09:48:09 +02:00
\end { align*}
\paragraph { $ ( I _ 3 ) $ }
2021-10-04 22:08:27 +02:00
$ \int _ 1 ^ { + \infty } \frac { 5 x + x ^ 2 } { x ^ 3 + x ^ 3 \sqrt { x } } \dif x $
2021-10-04 09:48:09 +02:00
\begin { align*}
\forall x \in [1; +\infty [\quad \frac { 5x + x^ 2} { x^ 3 + x^ 3\sqrt { x} } \geq 0 \\ \\
\frac { 5x + x^ 2} { x^ 3 + x^ 3\sqrt { x} }
= \frac { x^ 2(\frac { 5x} { x^ 2} + 1)} { x^ 3\sqrt { x} (\frac { 1} { \sqrt { x} } + 1)}
= \frac { x^ 2(\frac { 5} { x} + 1)} { x^ { 3 + \frac { 1} { 2} } (\frac { 1} { \sqrt { x} } + 1)}
\sim \frac { x^ 2} { x^ { \frac { 7} { 2} } }
\sim \frac { 1} { x^ { \frac { 3} { 2} } } \\
2021-10-04 22:08:27 +02:00
\text { Or } \int _ 1^ { +\infty } \frac { 1} { x^ { \frac { 3} { 2} } } \dif x \text { converge donc $ I _ 3 $ converge par équivalence.} \\
2021-10-04 09:48:09 +02:00
\end { align*}
\paragraph { $ ( I _ 4 ) $ }
2021-10-04 22:08:27 +02:00
$ \int _ 0 ^ { + \infty } \frac { x \sqrt [ 3 ] { x } } { x ^ 2 \sqrt { x } + 5 } e ^ { - x } \dif x $
2021-10-04 09:48:09 +02:00
\begin { align*}
\forall x \in [0; +\infty [ \quad \frac{x \sqrt[3] { x} } { x^ 2\sqrt { x} + 5} e^ { -x} \geq 0 \\ \\
\frac { x \sqrt [3] { x} } { x^ 2\sqrt { x} + 5} e^ { -x}
= \frac { x^ { \frac { 4} { 3} } } { x^ 2\sqrt { x} (1 + \frac { 5} { x^ 2\sqrt { x} } )} e^ { -x}
\sim \frac { x^ { \frac { 4} { 3} } } { x^ { \frac { 5} { 2} } } e^ { -x}
\sim x^ { \frac { -7} { 6} } e^ { -x}
\sim \frac { 1} { x^ { \frac { 7} { 6} } } e^ { -x} \\
2021-10-04 22:08:27 +02:00
\text { Or } \int _ 0^ { +\infty } \frac { 1} { x^ { \frac { 7} { 6} } } e^ { -x} \dif x \text { converge (l'exponentielle l'emporte) donc $ I _ 4 $ converge par équivalence.} \\
2021-10-04 09:48:09 +02:00
(\sim e^ { -kx} \text { avec } k = 1 > 0)
\end { align*}
2021-10-04 10:08:17 +02:00
\subsection { Exercice 2}
Étudier la convergence absolue de l'intégrale généralisée suivante.
\paragraph { $ ( I _ 5 ) $ }
2021-10-04 22:08:27 +02:00
$ \int _ 1 ^ { + \infty } \frac { \sin x } { x ^ 2 } \dif x $
2021-10-04 10:08:17 +02:00
$ ( I _ 5 ) $ n'est pas strictement positif sur $ [ 1 ; + \infty [ $ .
Nous allons donc étudier sa valeur absolue.
\begin { align*}
-1 \leq \sin { x} \leq 1 \\
0 \leq |\sin { x} | \leq 1 \\
0 \leq \left |\frac { \sin { x} } { x^ 2} \right | \leq \frac { 1} { x^ 2} \\
2021-10-04 22:08:27 +02:00
\text { Or } \int _ 1^ { +\infty } \frac { 1} { x^ 2} \dif x \text { converge donc } \left |\frac { \sin { x} } { x^ 2} \right | \text { converge par majoration.} \\
2021-10-04 10:08:17 +02:00
\implies I_ 5 \text { converge absolument.} \\
\end { align*}
2021-10-16 18:20:03 +02:00
\section { Séries de Fourier}
\subsection { Exercice 1}
\begin { enumerate}
\item Déterminer le développement en série de Fourier de la fonction $ f $ , 2-périodique, définie par~: \\
$ f ( x ) = |x| \quad \forall x \in [ - 1 ; 1 [ $
2021-10-19 09:32:19 +02:00
$ f ( - x ) = | - x| = |x| = f ( x ) $ \quad donc $ f $ est paire $ \implies b _ n = 0 $
\begin { tabularx} { \linewidth } { XX}
{ \begin { align*}
a_ 0 & = \frac { 1} { 2} \int _ { -1} ^ 1 |x| \dif x \\
& = \int _ { 0} ^ 1 x \dif x \\
& = \left [\frac{x^2}{2}\right] _ 0^ 1 \\
a_ 0 & = \frac { 1} { 2}
\end { align*} } &
{ \begin { align*}
a_ n & = \frac { 2} { T} \int _ { -T/2} ^ { T/2} |x| \cos { \frac { 2\pi nx} { T} } \dif x \\
a_ n & = \frac { 2} { 2} \int _ { -1} ^ 1 |x| \cos { \frac { 2\pi nx} { 2} } \dif x \\
& = 2\int _ 0^ 1 x \cos (n\pi x) \dif x \\
\text { IPP }
& \left \{
\begin { array} { ll}
u = x & u' = 1 \\
v' = \cos (n\pi x) & v = \frac { \sin { n\pi x} } { n\pi } \\
\end { array}
\right . \\
a_ n & = 2 \left (\left [x\frac{\sin{n\pi x}}{n\pi}\right] _ 0^ 1 - \int _ 0^ 1 \frac { \sin { n\pi x} } { n\pi } \dif x \right ) \\
& = 2 \left (\frac { \sin { n\pi } } { n\pi } - 0 + \left [\frac{\cos{n\pi x}}{(n\pi)^2}\right] _ 0^ 1 \right ) \\
& = 2 \left (0 + \frac { \cos { n\pi } } { (n\pi )^ 2} - \frac { \cos { 0} } { (n\pi )^ 2} \right ) \\
a_ n & = 2\frac { (-1)^ n - 1} { (n\pi )^ 2}
\end { align*} } \\
\end { tabularx}
2021-10-16 18:20:03 +02:00
\begin { equation*}
2021-10-19 09:32:19 +02:00
\implies f(x) = \frac { 1} { 2} + \sum _ { n=1} ^ { +\infty } 2\frac { (-1)^ n - 1} { (n\pi )^ 2} \cos (n\pi x)
2021-10-16 18:20:03 +02:00
\end { equation*}
\item En déduire que \quad $ \frac { \pi ^ 2 } { 8 } = \sum _ { n = 0 } ^ { + \infty } \frac { 1 } { ( 2 n + 1 ) ^ 2 } $
2021-10-19 09:32:19 +02:00
\begin { tabularx} { \linewidth } { XX}
{ pour $ x = 0 $ ~:
\begin { align*}
f(0) & = \frac { 1} { 2} + \sum _ { n=1} ^ { +\infty } 2\frac { (-1)^ n - 1} { (n\pi )^ 2} \cos { 0} \\
\iff 0 & = \frac { 1} { 2} + \sum _ { n=1} ^ { +\infty } 2\frac { (-1)^ n - 1} { (n\pi )^ 2} \\
\iff -\frac { 1} { 2} & = 2 \sum _ { n=1} ^ { +\infty } \frac { (-1)^ n - 1} { (n\pi )^ 2} \\
\iff -\frac { 1} { 4} & = \sum _ { n=1} ^ { +\infty } \frac { (-1)^ n - 1} { (n\pi )^ 2} \\
\iff \frac { 1} { 4} & = \sum _ { n=1} ^ { +\infty } \frac { (-1)^ { n+1} + 1} { (n\pi )^ 2} \\
\iff \frac { \pi ^ 2} { 4} & = \sum _ { n=1} ^ { +\infty } \frac { (-1)^ { n+1} + 1} { n^ 2} \\
\iff \frac { \pi ^ 2} { 8} & = \sum _ { n=1} ^ { +\infty } \frac { (-1)^ { n+1} + 1} { 2n^ 2}
\end { align*} } &
{ pour $ x = - 1 $ ~:
\begin { align*}
f(-1) & = \frac { 1} { 2} + \sum _ { n=1} ^ { +\infty } 2\frac { (-1)^ n - 1} { (n\pi )^ 2} \cos (-n\pi ) \\
\iff 1 & = \frac { 1} { 2} + 2\sum _ { n=1} ^ { +\infty } \frac { (-1)^ n - 1} { (n\pi )^ 2} \cos (n\pi ) \\
\iff \frac { 1} { 2} & = 2\sum _ { n=1} ^ { +\infty } \frac { (-1)^ n - 1} { (n\pi )^ 2} (-1)^ n \\
\iff \frac { 1} { 4} & = \sum _ { n=1} ^ { +\infty } \frac { (-1)^ { 2n} - (-1)^ n} { (n\pi )^ 2} \\
\iff \frac { 1} { 4} & = \sum _ { n=1} ^ { +\infty } \frac { 1 - (-1)^ n} { (n\pi )^ 2} \\
\iff \frac { \pi ^ 2} { 4} & = \sum _ { n=1} ^ { +\infty } \frac { 1 + (-1)^ { n+1} } { n^ 2} \\
\iff \frac { \pi ^ 2} { 8} & = \sum _ { n=1} ^ { +\infty } \frac { (-1)^ { n+1} + 1} { 2n^ 2} \\
\end { align*} } \\
\end { tabularx}
2021-10-16 18:20:03 +02:00
\item Appliquer l'identité de Parseval-Bessel.
En déduire la valeur de la somme \quad $ \sum _ { n = 0 } ^ { + \infty } \frac { 1 } { ( 2 n + 1 ) ^ 4 } $
2021-10-17 18:49:43 +02:00
\begin { align*}
2021-10-19 09:32:19 +02:00
a_ 0^ 2 + \frac { 1} { 2} \sum _ { n=1} ^ { +\infty } a_ n^ 2 = \frac { 1} { 2} \int _ { -1} ^ { 1} f^ 2(x) \dif x \\
2021-10-17 18:49:43 +02:00
\end { align*}
2021-10-16 18:20:03 +02:00
\end { enumerate}
2021-09-19 14:50:19 +02:00
\end { document}