Add exercices Analyse

This commit is contained in:
flyingscorpio@arch-desktop 2021-09-19 14:50:19 +02:00
parent 6636e4ff31
commit 467a1d6d54
2 changed files with 194 additions and 0 deletions

View file

@ -0,0 +1,16 @@
filename=$(shell basename $(shell pwd))
timestamp=$(shell date +%Y-%m-%d_%H:%M)
all: snapshot
snapshot: main.tex
@latexmk -pdf main.tex >/dev/null 2>&1
@if ! cmp --silent build/main.pdf ${filename}_*.pdf; then \
touch ${filename}_tmp.pdf; \
rm ${filename}*.pdf; \
cp build/main.pdf ${filename}_${timestamp}.pdf; \
echo "Updated"; \
fi
clean:
@rm -rf build 2>/dev/null

178
analyse/exercices/main.tex Normal file
View file

@ -0,0 +1,178 @@
\documentclass[a4paper,french,12pt]{article}
\title{Analyse --- Exercices}
\author{}
\date{Dernière compilation~: \today{} à \currenttime}
\usepackage{../../cours}
\usepackage{enumitem}
\usepackage{xfrac}
\begin{document}
\maketitle
\section{Équations différentielles d'ordre 1}
\paragraph{$(E_1)$}
$y' - 2y = x^2$
\begin{enumerate}[label=\alph*)]
\item Solution homogène
\begin{align*}
r = 2 \implies y_0 = \lambda e^{2x}
\end{align*}
\item Solution particulière
\begin{align*}
\left\{
\begin{array}{l}
y_1 = ax^2 + bx + c \\
y_1' = 2ax + b \\
\end{array}
\right.
\quad y_1' - 2 y_1 = x^2 \Leftrightarrow
2ax + b - 2(ax^2 + bx + c) = x^2 \\
\left\{
\begin{array}{l}
-2a = 1 \\
2a - 2b = 0 \\
b - 2c = 0 \\
\end{array}
\right.
\Leftrightarrow
\left\{
\begin{array}{l}
a = \sfrac{-1}{2} \\
b = \sfrac{-1}{2} \\
c = \sfrac{-1}{4} \\
\end{array}
\right. \\
\implies y_1 = -\frac{1}{2}x^2 -\frac{1}{2}x -\frac{1}{4}
\end{align*}
\item Solution générale
\begin{equation*}
y = y_0 + y_1 = \boxed{-\frac{1}{2}x^2 -\frac{1}{2}x -\frac{1}{4} + \lambda e^{2x}}
\end{equation*}
\end{enumerate}
\paragraph{$(E_2)$}
$3y' - 9y = 7e^{3x}$
\begin{enumerate}[label=\alph*)]
\item Solution homogène
\begin{align*}
r = 3 \implies y_0 = \lambda e^{3x}
\end{align*}
\item Solution particulière
\begin{align*}
\left\{
\begin{array}{l}
y_1 = ax e^{3x} \\
y_1' = ae^{3x} + 3axe^{3x} = (3ax + a)e^{3x} \\
\end{array}
\right.
\quad 3y_1' - 9y_1 = 7e^{3x}
&\Leftrightarrow 3(3ax + a)e^{3x} - 9axe^{3x} = 7e^{3x} \\
&\Leftrightarrow (9ax + 3a)e^{3x} - 9axe^{3x} = 7e^{3x} \\
&\Leftrightarrow 9ax + 3a - 9ax = 7 \\
&\Leftrightarrow 3a = 7 \\
&\Leftrightarrow a = \frac{7}{3} \\
\implies y_1 = \frac{7}{3}xe^{3x}
\end{align*}
\item Solution générale
\begin{equation*}
y = y_0 + y_1 = \lambda e^{3x} + \frac{7}{3}xe^{3x} = \boxed{(\frac{7}{3}x + \lambda)e^{3x}}
\end{equation*}
\end{enumerate}
\paragraph{$(E_3)$}
$2y' - 4y = 5e^{3x}$
\begin{enumerate}[label=\alph*)]
\item Solution homogène
\begin{align*}
r = 2 \implies y_0 = \lambda e^{2x}
\end{align*}
\item Solution particulière
\begin{align*}
\left\{
\begin{array}{l}
y_1 = ae^{3x} \\
y_1' = 3ae^{3x} \\
\end{array}
\right.
\quad 2y_1' - 4y_1 = 5e^{3x}
&\Leftrightarrow 6ae^{3x} - 4ae^{3x} = 5e^{3x} \\
&\Leftrightarrow 2a = 5 \\
&\Leftrightarrow a = \frac{5}{2} \\
\implies y_1 = \frac{5}{2}e^{3x}
\end{align*}
\item Solution générale
\begin{equation*}
y = y_0 + y_1 = \boxed{\lambda e^{2x} + \frac{5}{2}e^{3x}}
\end{equation*}
\end{enumerate}
\paragraph{$(E_4)$}
$y' + 4y = 3\cos(2x)$
\begin{enumerate}[label=\alph*)]
\item Solution homogène
\begin{align*}
r = -4 \implies y_0 = \lambda e^{-4x}
\end{align*}
\item Solution particulière
\begin{align*}
\left\{
\begin{array}{l}
y_1 = a\cos(2x) + b\sin(2x) \\
y_1' = -2a\sin(2x) + 2b\cos(2x) \\
\end{array}
\right.
\end{align*}
\begin{align*}
y_1' + 4y_1 = 3\cos(2x)
&\Leftrightarrow -2a\sin(2x) + 2b\cos(2x) + 4(a\cos(2x) + b\sin(2x)) = 3\cos(2x) \\
&\Leftrightarrow
\left\{
\begin{array}{l}
4a + 2b = 3 \\
4b - 2a = 0 \\
\end{array}
\right.
\Leftrightarrow
\left\{
\begin{array}{l}
4a + 2b = 3 \\
4a - 8b = 0 \\
\end{array}
\right.
% TODO: finish
\end{align*}
\end{enumerate}
\section{Équations différentielles d'ordre 2}
\end{document}