Major reformatting

This commit is contained in:
flyingscorpio@arch-desktop 2021-10-23 14:13:56 +02:00
parent a411f659fb
commit a9010ef96a

View file

@ -12,195 +12,197 @@
\tableofcontents
\clearpage
\section{Coin par c\oe{}ur}
\paragraph{Trigonométrie}
\begin{tabular}{c|ccccc}
\toprule
x & 0 & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\pi}{3}$ & $\frac{\pi}{2}$ \\
\midrule
$\sin{x}$ & 0 & $\frac{1}{2}$ & $\frac{\sqrt{2}}{2}$ & $\frac{\sqrt{3}}{2}$ & 1 \\
\midrule
$\cos{x}$ & 1 & $\frac{\sqrt{3}}{2}$ & $\frac{\sqrt{2}}{2}$ & $\frac{1}{2}$ & 0 \\
\midrule
$\frac{\sin{x}}{\cos{x}} = \tan{x}$ & 0 & $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ & 1 & $\sqrt{3}$ & impossible \\
\bottomrule
\end{tabular}
\paragraph{Trigonométrie}
\begin{tabular}{c|ccccc}
\toprule
x & 0 & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\pi}{3}$ & $\frac{\pi}{2}$ \\
\midrule
$\sin{x}$ & 0 & $\frac{1}{2}$ & $\frac{\sqrt{2}}{2}$ & $\frac{\sqrt{3}}{2}$ & 1 \\
\midrule
$\cos{x}$ & 1 & $\frac{\sqrt{3}}{2}$ & $\frac{\sqrt{2}}{2}$ & $\frac{1}{2}$ & 0 \\
\midrule
$\frac{\sin{x}}{\cos{x}} = \tan{x}$ & 0 & $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ & 1 & $\sqrt{3}$ & impossible \\
\bottomrule
\end{tabular}
\paragraph{Exponentielle et Logarithme}
\paragraph{Exponentielle et Logarithme}
\hfill
$e^0 = 1 ; e^1 = e$
\hfill
$\ln{0} = \text{impossible~; } \ln{1} = 0 \text{~; } \ln{e} = 1$
\hfill
$e^0 = 1 ; e^1 = e$
\hfill
$\ln{0} = \text{impossible~; } \ln{1} = 0 \text{~; } \ln{e} = 1$
\paragraph{Dérivées et Primitives}
\paragraph{Dérivées et Primitives}
\begin{multicols}{2}
\begin{tabularx}{\linewidth}{YY}
\toprule
Primitive --- $f(x)$ & Dérivée --- $f'(x)$ \\
\toprule
\textcolor{red}{$a$} & 0 \\
\midrule
\textcolor{red}{$ax$} & \textcolor{red}{$a$} \\
\midrule
$\frac{1}{2} x^2$ & \textcolor{red}{$x$} \\
\midrule
\textcolor{red}{$x^n$} & \textcolor{red}{$nx^{n-1}$} \\
\midrule
\textcolor{red}{$\sqrt{x}$} & $\frac{1}{2\sqrt{x}}$ \\
\midrule
$\frac{2}{3} x\sqrt{x}$ & \textcolor{red}{$\sqrt{x}$} \\
\midrule
\textcolor{red}{$e^{ax}$} & \textcolor{red}{$ae^{ax}$} \\
\midrule
\textcolor{red}{$a^x$} & $a^x \ln{a}$ \\
\midrule
\textcolor{red}{$\ln{|x|}$} & \textcolor{red}{$\frac{1}{x}$} \\
\midrule
\textcolor{red}{$-\frac{1}{x}$} & \textcolor{red}{$\frac{1}{x^2}$} \\
\midrule
\textcolor{red}{$\cos{x}$} & \textcolor{red}{$-\sin{x}$} \\
\midrule
\textcolor{red}{$\sin{x}$} & \textcolor{red}{$\cos{x}$} \\
\midrule
\textcolor{red}{$\tan{x}$} & $1 + \tan^2{x} = \frac{1}{\cos^2{x}}$ \\
\midrule
$\cot{x}$ & $-1 - \cot^2{x} = \frac{-1}{\sin^2{x}}$ \\
\midrule
$\arccos{x}$ & $\frac{-1}{\sqrt{1 - x^2}}$ \\
\midrule
$\arcsin{x}$ & $\frac{1}{\sqrt{1 - x^2}}$ \\
\midrule
\textcolor{red}{$\arctan{x}$} & \textcolor{red}{$\frac{1}{1 + x^2}$} \\
\bottomrule
\end{tabularx}
\columnbreak
\begin{tabularx}{\linewidth}{lY}
\toprule
\multirow{2}{*}{Linéarité} & $(u + v)' = u' + v'$ \\
& $(au)' = au'$ \\
\midrule
Produit & $(uv)' = u'v + uv'$ \\
\midrule
Inverse & $\left(\frac{1}{v}\right)' = - \frac{v'}{v^2}$ \\
\midrule
Quotient & $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$ \\
\midrule
Composée & $(f(u))' = u'f'(u)$ \\
\bottomrule
\end{tabularx}
\begin{tabularx}{\linewidth}{YY}
\toprule
Fonction & Primitive \\
\toprule
$u'u^n$ & $\frac{u^{n+1}}{n+1}$ \\
\midrule
$\frac{u'}{u^2}$ & $-\frac{1}{u}$ \\
\midrule
$\frac{u'}{\sqrt{u}}$ & $2\sqrt{u}$ \\
\midrule
$u'\cos{u}$ & $\sin{u}$ \\
\midrule
$u'\sin{u}$ & $-\cos{u}$ \\
\midrule
$\frac{u'}{u}$ & $\ln{|u|}$ \\
\midrule
$u'e^u$ & $e^u$ \\
\midrule
$\frac{u'}{1 + u^2}$ & $\arctan{u}$ \\
\bottomrule
\end{tabularx}
\end{multicols}
\paragraph{Intégrales}
$\int_a^b f(x)\dif x = [F(x)]_a^b = F(b) - F(a)$
\begin{multicols}{2}
\begin{tabularx}{\linewidth}{YY}
\toprule
Intégration par parties~: & Intégration par changement de variables~: \\
Primitive --- $f(x)$ & Dérivée --- $f'(x)$ \\
\toprule
$a$ & 0 \\
\midrule
$\int_a^b uv'\dif x = [uv]_a^b - \int_a^b u'v\dif x$ & $\int_a^b f(x)\dif x = \int_{u(a)}^{u(b)} f(u)\frac{\dif u}{u'}$ \\
$ax$ & $a$ \\
\midrule
$\frac{1}{2} x^2$ & $x$ \\
\midrule
$x^n$ & $nx^{n-1}$ \\
\midrule
$\sqrt{x}$ & $\frac{1}{2\sqrt{x}}$ \\
\midrule
$\frac{2}{3} x\sqrt{x}$ & $\sqrt{x}$ \\
\midrule
$e^{ax}$ & $ae^{ax}$ \\
\midrule
$a^x$ & $a^x \ln{a}$ \\
\midrule
$\ln{|x|}$ & $\frac{1}{x}$ \\
\midrule
$-\frac{1}{x}$ & $\frac{1}{x^2}$ \\
\midrule
$\cos{x}$ & $-\sin{x}$ \\
\midrule
$\sin{x}$ & $\cos{x}$ \\
\midrule
$\tan{x}$ & $1 + \tan^2{x} = \frac{1}{\cos^2{x}}$ \\
\midrule
$\cot{x}$ & $-1 - \cot^2{x} = \frac{-1}{\sin^2{x}}$ \\
\midrule
$\arccos{x}$ & $\frac{-1}{\sqrt{1 - x^2}}$ \\
\midrule
$\arcsin{x}$ & $\frac{1}{\sqrt{1 - x^2}}$ \\
\midrule
$\arctan{x}$ & $\frac{1}{1 + x^2}$ \\
\bottomrule
\end{tabularx}
\paragraph{Équations différentielles}
\columnbreak
\begin{tabularx}{\linewidth}{lllc}
\begin{tabularx}{\linewidth}{lY}
\toprule
\multicolumn{2}{l}{Type d'E.D.} & Solutions & \\
\toprule
\multicolumn{2}{l}{$ay' + by = 0$} & $\lambda e^{rx} \quad \text{ avec } r = \frac{-b}{a}$ & $a, b, \lambda\in\mathbb{R}$ \\
\multirow{2}{*}{Linéarité} & $(u + v)' = u' + v'$ \\
& $(au)' = au'$ \\
\midrule
\multicolumn{2}{l}{$ay' + by = f(x)$} & $y_0 + \lambda e^{rx} \quad \text{ avec } r = \frac{-b}{a}$ & \makecell{$y_0$ solution particulière de \\ $ay' + by = f(x)$ \\ $f$ une fonction et $a, b, \lambda\in\mathbb{R}$} \\
Produit & $(uv)' = u'v + uv'$ \\
\midrule
\multirow{3}{*}{$ay'' + by' + cy = 0$} & $\Delta > 0$ & $\lambda e^{r_1 x} + \mu e^{r_2 x}$ & \multirowcell{3}[0pt][c]{$\lambda, \mu \in \mathbb{R}$ \\ $\alpha = \frac{-b}{2a} \quad \beta = \frac{\sqrt{|\Delta|}}{2a}$} \\
\cline{2-3}
& $\Delta = 0$ & $(\lambda x + \mu) e^{r_0 x}$ & \\
\cline{2-3}
& $\Delta < 0$ & $e^{\alpha x}(\lambda\cos{(\beta x)} + \mu\sin{(\beta x)})$ & \\
Inverse & $\left(\frac{1}{v}\right)' = - \frac{v'}{v^2}$ \\
\midrule
Quotient & $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$ \\
\midrule
Composée & $(f(u))' = u'f'(u)$ \\
\bottomrule
\end{tabularx}
\paragraph{Solutions particulières des équations différentielles de 2\up{nd} ordre}
\begin{tabularx}{\linewidth}{XX}
\begin{tabularx}{\linewidth}{YY}
\toprule
\multicolumn{2}{c}{Second membre du type $e^{\alpha x}P(x)$} \\
$\alpha$ non racine & $y_1 = e^{\alpha x} Q(x)$ \\
$\alpha$ racine simple & $y_1 = x e^{\alpha x} Q(x)$ \\
$\alpha$ racine double & $y_1 = x^2 e^{\alpha x} Q(x)$ \\
Fonction & Primitive \\
\toprule
$u'u^n$ & $\frac{u^{n+1}}{n+1}$ \\
\midrule
\multicolumn{2}{c}{Second membre du type $e^{\alpha x}(P_1(x)\cos(\beta x) + P_2(x)\sin(\beta x))$} \\
$\alpha + i\beta$ non racine & $y_1 = e^{\alpha x}(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$ \\
$\alpha + i\beta$ racine & $y_1 = x e^{\alpha x}(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$ \\
$\frac{u'}{u^2}$ & $-\frac{1}{u}$ \\
\midrule
$\frac{u'}{\sqrt{u}}$ & $2\sqrt{u}$ \\
\midrule
$u'\cos{u}$ & $\sin{u}$ \\
\midrule
$u'\sin{u}$ & $-\cos{u}$ \\
\midrule
$\frac{u'}{u}$ & $\ln{|u|}$ \\
\midrule
$u'e^u$ & $e^u$ \\
\midrule
$\frac{u'}{1 + u^2}$ & $\arctan{u}$ \\
\bottomrule
\end{tabularx}
\paragraph{Intégrales généralisées}
\end{multicols}
Intégrales de référence~:
\begin{tabular}{lll}
\toprule
Intégrale & converge si & diverge si \\
\toprule
$\int_a^{+\infty}\frac{1}{x^{\alpha}}\dif x$ & $\alpha > 1$ & $\alpha \leq 1$ \\
$\int_a^{+\infty}e^{-\alpha x}\dif x$ & $\alpha > 0$ & $\alpha \leq 0$ \\
$\int_a^{+\infty}x^n e^{-\alpha x}\dif x$ & $\alpha > 0$ & $\alpha \leq 0$ \\
$\int_a^{+\infty}\frac{1}{x^{\alpha}(\ln x)^{\beta}}\dif x$ & $(\alpha > 1)$ ou $(\alpha = 1 \text{ et }\beta > 1)$ & $(\alpha < 1)$ ou $(\alpha = 1 \text{ et }\beta \leq 1)$ \\
\bottomrule
\end{tabular}
\paragraph{Intégrales}\\
$\int_a^b f(x)\dif x = [F(x)]_a^b = F(b) - F(a)$
\begin{tabular}{|c|c|}
\toprule
IPP~: & changement de variables~: \\
\midrule
$\int_a^b uv'\dif x = [uv]_a^b - \int_a^b u'v\dif x$ & $\int_a^b f(x)\dif x = \int_{u(a)}^{u(b)} f(u)\frac{\dif u}{u'}$ \\
\bottomrule
\end{tabular}
Majoration, minoration~:
\begin{tabular}{lll}
$0 \leq f(x) \leq g(x)$ & $\int_a^{+\infty}g(x)\dif x$ converge $\implies \int_a^{+\infty}f(x)\dif x$ converge aussi \\
& $\int_a^{+\infty}f(x)\dif x$ diverge $\implies \int_a^{+\infty}g(x)\dif x$ diverge aussi \\
\end{tabular}
\paragraph{Équations différentielles}
\paragraph{Séries de Fourier}
$S_f(x) = a_0 + \sum_{n=1}^{+\infty}\left(a_n\cos{\frac{2\pi nx}{T}} + b_n\sin{\frac{2\pi nx}{T}}\right)$
\begin{tabularx}{\linewidth}{lllc}
\toprule
\multicolumn{2}{l}{Type d'E.D.} & Solutions & \\
\toprule
\multicolumn{2}{l}{$ay' + by = 0$} & $\lambda e^{rx} \quad \text{ avec } r = \frac{-b}{a}$ & $a, b, \lambda\in\mathbb{R}$ \\
\midrule
\multicolumn{2}{l}{$ay' + by = f(x)$} & $y_0 + \lambda e^{rx} \quad \text{ avec } r = \frac{-b}{a}$ & \makecell{$y_0$ solution particulière de \\ $ay' + by = f(x)$ \\ $f$ une fonction et $a, b, \lambda\in\mathbb{R}$} \\
\midrule
\multirow{3}{*}{$ay'' + by' + cy = 0$} & $\Delta > 0$ & $\lambda e^{r_1 x} + \mu e^{r_2 x}$ & \multirowcell{3}[0pt][c]{$\lambda, \mu \in \mathbb{R}$ \\ $\alpha = \frac{-b}{2a} \quad \beta = \frac{\sqrt{|\Delta|}}{2a}$} \\
\cline{2-3}
& $\Delta = 0$ & $(\lambda x + \mu) e^{r_0 x}$ & \\
\cline{2-3}
& $\Delta < 0$ & $e^{\alpha x}(\lambda\cos{(\beta x)} + \mu\sin{(\beta x)})$ & \\
\bottomrule
\end{tabularx}
avec
\hfill
$a_0 = \frac{1}{T} \int_{-L}^L f(x) \dif x$
\hfill
$a_n = \frac{2}{T} \int_{-L}^L f(x) \cos{\frac{2\pi nx}{T}} \dif x$
\hfill
$b_n = \frac{2}{T} \int_{-L}^L f(x) \sin{\frac{2\pi nx}{T}} \dif x$
\paragraph{Solutions particulières des équations différentielles de 2\up{nd} ordre}
$f$ paire $\implies b_n = 0$
\qquad
$f$ impaire $\implies a_0$ et $a_n = 0$
\hfill
$\cos(n\pi) = (-1)^n$
\qquad
$\sin(n\pi) = 0$
\begin{tabularx}{\linewidth}{XX}
\toprule
\multicolumn{2}{c}{Second membre du type $e^{\alpha x}P(x)$} \\
$\alpha$ non racine & $y_1 = e^{\alpha x} Q(x)$ \\
$\alpha$ racine simple & $y_1 = x e^{\alpha x} Q(x)$ \\
$\alpha$ racine double & $y_1 = x^2 e^{\alpha x} Q(x)$ \\
\midrule
\multicolumn{2}{c}{Second membre du type $e^{\alpha x}(P_1(x)\cos(\beta x) + P_2(x)\sin(\beta x))$} \\
$\alpha + i\beta$ non racine & $y_1 = e^{\alpha x}(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$ \\
$\alpha + i\beta$ racine & $y_1 = x e^{\alpha x}(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$ \\
\bottomrule
\end{tabularx}
\paragraph{Intégrales généralisées}
Intégrales de référence~:
\begin{tabular}{lcc}
\toprule
Intégrale & converge si & diverge si \\
\toprule
$\int_a^{+\infty}\frac{1}{x^{\alpha}}\dif x$ & $\alpha > 1$ & $\alpha \leq 1$ \\
$\int_a^{+\infty}e^{-\alpha x}\dif x$ & $\alpha > 0$ & $\alpha \leq 0$ \\
$\int_a^{+\infty}x^n e^{-\alpha x}\dif x$ & $\alpha > 0$ & $\alpha \leq 0$ \\
$\int_a^{+\infty}\frac{1}{x^{\alpha}(\ln x)^{\beta}}\dif x$ & $(\alpha > 1)$ ou $(\alpha = 1 \text{ et }\beta > 1)$ & $(\alpha < 1)$ ou $(\alpha = 1 \text{ et }\beta \leq 1)$ \\
\bottomrule
\end{tabular}
Majoration, minoration~:
\begin{tabular}{lll}
$0 \leq f(x) \leq g(x)$ & $\int_a^{+\infty}g(x)\dif x$ converge $\implies \int_a^{+\infty}f(x)\dif x$ converge aussi \\
& $\int_a^{+\infty}f(x)\dif x$ diverge $\implies \int_a^{+\infty}g(x)\dif x$ diverge aussi \\
\end{tabular}
\paragraph{Séries de Fourier}
$S_f(x) = a_0 + \sum_{n=1}^{+\infty}\left(a_n\cos{\frac{2\pi nx}{T}} + b_n\sin{\frac{2\pi nx}{T}}\right)$
avec
\hfill
$a_0 = \frac{1}{T} \int_{-L}^L f(x) \dif x$
\hfill
$a_n = \frac{2}{T} \int_{-L}^L f(x) \cos{\frac{2\pi nx}{T}} \dif x$
\hfill
$b_n = \frac{2}{T} \int_{-L}^L f(x) \sin{\frac{2\pi nx}{T}} \dif x$
$f$ paire $\implies b_n = 0$ \\
$f$ impaire $\implies a_0$ et $a_n = 0$
\hfill
$\cos(n\pi) = (-1)^n$
\qquad
$\sin(n\pi) = 0$
\hfill{} \\
Égalité de Parseval~:
\hfill
$\frac{1}{T}\int_{-L}^L f^2(x) \dif x = a_0^2 + \frac{1}{2}\sum_{n=1}^{+\infty}(a_n^2 + b_n^2)$
\hfill{}
\clearpage
\section{Rappel sur les dérivées}