Add Fourier to coin par coeur, make it fit
This commit is contained in:
parent
191df8c9fc
commit
a411f659fb
1 changed files with 39 additions and 30 deletions
|
@ -15,8 +15,7 @@
|
|||
\section{Coin par c\oe{}ur}
|
||||
|
||||
\paragraph{Trigonométrie}
|
||||
|
||||
\begin{tabularx}{\linewidth}{c|YYYYY}
|
||||
\begin{tabular}{c|ccccc}
|
||||
\toprule
|
||||
x & 0 & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\pi}{3}$ & $\frac{\pi}{2}$ \\
|
||||
\midrule
|
||||
|
@ -26,18 +25,15 @@
|
|||
\midrule
|
||||
$\frac{\sin{x}}{\cos{x}} = \tan{x}$ & 0 & $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ & 1 & $\sqrt{3}$ & impossible \\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
\end{tabular}
|
||||
|
||||
\paragraph{Exponentielle et Logarithme}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
\hfill
|
||||
$e^0 = 1 ; e^1 = e$
|
||||
|
||||
\hfill
|
||||
$\ln{0} = \text{impossible~; } \ln{1} = 0 \text{~; } \ln{e} = 1$
|
||||
|
||||
\end{multicols}
|
||||
|
||||
\paragraph{Dérivées et Primitives}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
@ -126,7 +122,7 @@
|
|||
\paragraph{Intégrales}
|
||||
$\int_a^b f(x)\dif x = [F(x)]_a^b = F(b) - F(a)$
|
||||
|
||||
\begin{tabularx}{\linewidth}{YYY}
|
||||
\begin{tabularx}{\linewidth}{YY}
|
||||
\toprule
|
||||
Intégration par parties~: & Intégration par changement de variables~: \\
|
||||
\midrule
|
||||
|
@ -156,12 +152,12 @@
|
|||
|
||||
\begin{tabularx}{\linewidth}{XX}
|
||||
\toprule
|
||||
\multicolumn{2}{l}{Second membre du type $e^{\alpha x}P(x)$} \\
|
||||
\multicolumn{2}{c}{Second membre du type $e^{\alpha x}P(x)$} \\
|
||||
$\alpha$ non racine & $y_1 = e^{\alpha x} Q(x)$ \\
|
||||
$\alpha$ racine simple & $y_1 = x e^{\alpha x} Q(x)$ \\
|
||||
$\alpha$ racine double & $y_1 = x^2 e^{\alpha x} Q(x)$ \\
|
||||
\midrule
|
||||
\multicolumn{2}{l}{Second membre du type $e^{\alpha x}(P_1(x)\cos(\beta x) + P_2(x)\sin(\beta x))$} \\
|
||||
\multicolumn{2}{c}{Second membre du type $e^{\alpha x}(P_1(x)\cos(\beta x) + P_2(x)\sin(\beta x))$} \\
|
||||
$\alpha + i\beta$ non racine & $y_1 = e^{\alpha x}(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$ \\
|
||||
$\alpha + i\beta$ racine & $y_1 = x e^{\alpha x}(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$ \\
|
||||
\bottomrule
|
||||
|
@ -170,28 +166,41 @@
|
|||
\paragraph{Intégrales généralisées}
|
||||
|
||||
Intégrales de référence~:
|
||||
|
||||
\begin{tabularx}{\linewidth}{XXX}
|
||||
\toprule
|
||||
Intégrale & converge si & diverge si \\
|
||||
\toprule
|
||||
$\int_a^{+\infty}\frac{1}{x^{\alpha}}\dif x$ & $\alpha > 1$ & $\alpha \leq 1$ \\
|
||||
\midrule
|
||||
$\int_a^{+\infty}e^{-\alpha x}\dif x$ & $\alpha > 0$ & $\alpha \leq 0$ \\
|
||||
\midrule
|
||||
$\int_a^{+\infty}x^n e^{-\alpha x}\dif x$ & $\alpha > 0$ & $\alpha \leq 0$ \\
|
||||
\midrule
|
||||
$\int_a^{+\infty}\frac{1}{x^{\alpha}(\ln x)^{\beta}}\dif x$ & $(\alpha > 1)$ ou $(\alpha = 1 \text{ et }\beta > 1)$ & $(\alpha < 1)$ ou $(\alpha = 1 \text{ et }\beta \leq 1)$ \\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
\begin{tabular}{lll}
|
||||
\toprule
|
||||
Intégrale & converge si & diverge si \\
|
||||
\toprule
|
||||
$\int_a^{+\infty}\frac{1}{x^{\alpha}}\dif x$ & $\alpha > 1$ & $\alpha \leq 1$ \\
|
||||
$\int_a^{+\infty}e^{-\alpha x}\dif x$ & $\alpha > 0$ & $\alpha \leq 0$ \\
|
||||
$\int_a^{+\infty}x^n e^{-\alpha x}\dif x$ & $\alpha > 0$ & $\alpha \leq 0$ \\
|
||||
$\int_a^{+\infty}\frac{1}{x^{\alpha}(\ln x)^{\beta}}\dif x$ & $(\alpha > 1)$ ou $(\alpha = 1 \text{ et }\beta > 1)$ & $(\alpha < 1)$ ou $(\alpha = 1 \text{ et }\beta \leq 1)$ \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
|
||||
Majoration, minoration~:
|
||||
\begin{tabular}{lll}
|
||||
$0 \leq f(x) \leq g(x)$ & $\int_a^{+\infty}g(x)\dif x$ converge $\implies \int_a^{+\infty}f(x)\dif x$ converge aussi \\
|
||||
& $\int_a^{+\infty}f(x)\dif x$ diverge $\implies \int_a^{+\infty}g(x)\dif x$ diverge aussi \\
|
||||
\end{tabular}
|
||||
|
||||
Si $0 \leq f(x) \leq g(x)$~:
|
||||
\begin{align*}
|
||||
\int_a^{+\infty}g(x)\dif x \text{ converge } &\implies \int_a^{+\infty}f(x)\dif x \text{ converge aussi} \\
|
||||
\int_a^{+\infty}f(x)\dif x \text{ diverge } &\implies \int_a^{+\infty}g(x)\dif x \text{ diverge aussi}
|
||||
\end{align*}
|
||||
\paragraph{Séries de Fourier}
|
||||
$S_f(x) = a_0 + \sum_{n=1}^{+\infty}\left(a_n\cos{\frac{2\pi nx}{T}} + b_n\sin{\frac{2\pi nx}{T}}\right)$
|
||||
|
||||
avec
|
||||
\hfill
|
||||
$a_0 = \frac{1}{T} \int_{-L}^L f(x) \dif x$
|
||||
\hfill
|
||||
$a_n = \frac{2}{T} \int_{-L}^L f(x) \cos{\frac{2\pi nx}{T}} \dif x$
|
||||
\hfill
|
||||
$b_n = \frac{2}{T} \int_{-L}^L f(x) \sin{\frac{2\pi nx}{T}} \dif x$
|
||||
|
||||
$f$ paire $\implies b_n = 0$
|
||||
\qquad
|
||||
$f$ impaire $\implies a_0$ et $a_n = 0$
|
||||
\hfill
|
||||
$\cos(n\pi) = (-1)^n$
|
||||
\qquad
|
||||
$\sin(n\pi) = 0$
|
||||
|
||||
\clearpage
|
||||
\section{Rappel sur les dérivées}
|
||||
|
|
Loading…
Reference in a new issue