Finish E6, equa diff 2nd ordre

This commit is contained in:
flyingscorpio@arch-desktop 2021-09-20 11:25:04 +02:00
parent c23297c234
commit 4f8084563f

View file

@ -227,7 +227,7 @@
\item Solution particulière \item Solution particulière
Second membre~: $(x + 3)e^{\alpha x}$ avec $\alpha = 2$ $\implies \alpha$ racine de l'équation caractéristique. second membre~: $(x + 3)e^{\alpha x}$ avec $\alpha = 2$ $\implies \alpha$ racine de l'équation caractéristique.
\begin{align*} \begin{align*}
&\left\{ &\left\{
\begin{array}{l} \begin{array}{l}
@ -282,6 +282,76 @@
\paragraph{$(E_6)$} \paragraph{$(E_6)$}
$y'' - y = x^3$ $y'' - y = x^3$
\begin{enumerate}[label=\alph*)]
\item Solution homogène
\begin{align*}
r^2 - 1 = 0
\implies \Delta = 4
\implies
\left\{
\begin{array}{l}
r_1 = \frac{0 - 2}{2} = -1 \\\\
r_2 = \frac{0 + 2}{2} = 1 \\
\end{array}
\right.
\end{align*}
\begin{align*}
\implies
y_0 = \lambda e^{-x} + \mu e^{x}
\end{align*}
\item Solution particulière
second membre~: $x^3e^{\alpha x}$ avec $\alpha = 0$ $\implies \alpha$ non racine de l'équation caractéristique.
\begin{align*}
&\left\{
\begin{array}{l}
y_1 = ax^3 + bx^2 + cx + d \\
y_1' = 3ax^2 + 2bx + c \\
y_1'' = 6ax + 2b \\
\end{array}
\right.
\end{align*}
Dans $(E_6)$~:
$6ax + 2b - ax^3 - bx^2 - cx - d = x^3$
\begin{align*}
\implies
-ax^3 - bx^2 + 6ax - cx + 2b - d = x^3
\implies
\left\{
\begin{array}{l}
-a = 1 \\
-b = 0 \\
6a - c = 0 \\
2b - d = 0 \\
\end{array}
\right.
\implies
\left\{
\begin{array}{l}
a = -1 \\
b = 0 \\
c = -6 \\
d = 0 \\
\end{array}
\right.
\end{align*}
\begin{align*}
\implies
y_1 = -x^3 - 6x
\end{align*}
\item Solution générale
\begin{equation*}
y = y_0 + y_1 = \boxed{\lambda e^{-x} + \mu e^{x} - x^3 - 6x}
\end{equation*}
\end{enumerate}
\paragraph{$(E_7)$} \paragraph{$(E_7)$}
$y'' + y = \cos{x}$ $y'' + y = \cos{x}$