From 4f8084563fb8fcf7d0981097027c923fe887ac95 Mon Sep 17 00:00:00 2001 From: "flyingscorpio@arch-desktop" Date: Mon, 20 Sep 2021 11:25:04 +0200 Subject: [PATCH] Finish E6, equa diff 2nd ordre --- analyse/exercices/main.tex | 72 +++++++++++++++++++++++++++++++++++++- 1 file changed, 71 insertions(+), 1 deletion(-) diff --git a/analyse/exercices/main.tex b/analyse/exercices/main.tex index 37849c1..18e0b34 100644 --- a/analyse/exercices/main.tex +++ b/analyse/exercices/main.tex @@ -227,7 +227,7 @@ \item Solution particulière - Second membre~: $(x + 3)e^{\alpha x}$ avec $\alpha = 2$ $\implies \alpha$ racine de l'équation caractéristique. + second membre~: $(x + 3)e^{\alpha x}$ avec $\alpha = 2$ $\implies \alpha$ racine de l'équation caractéristique. \begin{align*} &\left\{ \begin{array}{l} @@ -282,6 +282,76 @@ \paragraph{$(E_6)$} $y'' - y = x^3$ + \begin{enumerate}[label=\alph*)] + + \item Solution homogène + \begin{align*} + r^2 - 1 = 0 + \implies \Delta = 4 + \implies + \left\{ + \begin{array}{l} + r_1 = \frac{0 - 2}{2} = -1 \\\\ + r_2 = \frac{0 + 2}{2} = 1 \\ + \end{array} + \right. + \end{align*} + \begin{align*} + \implies + y_0 = \lambda e^{-x} + \mu e^{x} + \end{align*} + + \item Solution particulière + + second membre~: $x^3e^{\alpha x}$ avec $\alpha = 0$ $\implies \alpha$ non racine de l'équation caractéristique. + \begin{align*} + &\left\{ + \begin{array}{l} + y_1 = ax^3 + bx^2 + cx + d \\ + y_1' = 3ax^2 + 2bx + c \\ + y_1'' = 6ax + 2b \\ + \end{array} + \right. + \end{align*} + + Dans $(E_6)$~: + + $6ax + 2b - ax^3 - bx^2 - cx - d = x^3$ + \begin{align*} + \implies + -ax^3 - bx^2 + 6ax - cx + 2b - d = x^3 + \implies + \left\{ + \begin{array}{l} + -a = 1 \\ + -b = 0 \\ + 6a - c = 0 \\ + 2b - d = 0 \\ + \end{array} + \right. + \implies + \left\{ + \begin{array}{l} + a = -1 \\ + b = 0 \\ + c = -6 \\ + d = 0 \\ + \end{array} + \right. + \end{align*} + \begin{align*} + \implies + y_1 = -x^3 - 6x + \end{align*} + + \item Solution générale + \begin{equation*} + y = y_0 + y_1 = \boxed{\lambda e^{-x} + \mu e^{x} - x^3 - 6x} + \end{equation*} + + + \end{enumerate} + \paragraph{$(E_7)$} $y'' + y = \cos{x}$