efrei/optimisation-complexite/dm1.tex

149 lines
5 KiB
TeX

\documentclass[a4paper,french,12pt]{article}
\title{Optimisation et complexité --- DM1}
\author{Tunui Franken}
\date{Dernière compilation~: \today{} à \currenttime}
\usepackage{styles}
\usepackage{xfrac}
\usepackage{tikz}
\usetikzlibrary{shapes.multipart}
\usetikzlibrary{automata, arrows.meta, positioning}
\usepackage{xcolor,colortbl}
\definecolor{Red}{rgb}{0.89,0.45,0.36}
\newcolumntype{r}{>{\columncolor{Red}}Y}
\begin{document}
\maketitle
\section{Exercice 3}
On considère le programme linéaire suivant~:
\begin{align*}
\text{Max} Z = x_1 - x_2 \\
\left\{
\begin{array}{l}
2x_1 - x_2 \geq -4 \\
x_1 - x_2 \leq 4 \\
x_1 + x_2 \leq 10 \\
x_1, x_2 \geq 0 \\
\end{array}
\right.
\end{align*}
\subsection{}
Résoudre le programme par la méthode du simplexe, et déduire la solution optimale $S_1$.
\begin{align*}
\left\{
\begin{array}{l}
-2x_1 + x_2 + x_3 = 4 \\
x_1 - x_2 + x_4 = 4 \\
x_1 + x_2 + x_5 = 10 \\
x_1, x_2, x_3, x_4, x_5 \geq 0 \\
\end{array}
\right.
\end{align*}
\begin{tabularx}{\linewidth}{|Y|Y|Y|Y|Y|Y|Y|Y|Y|}
\hline
Max & \multicolumn{2}{|c|}{$C_i$} & 1 & -1 & 0 & 0 & 0 \\
\hline
$C_B$ & B & b & $x_1$ & $x_2$ & $x_3$ & $x_4$ & $x_5$ \\
\hline
0 & $x_4$ & 4 & -2 & 1 & 1 & 0 & 0 \\
0 & $x_5$ & 4 & 1 & -1 & 0 & 1 & 0 \\
0 & $x_6$ & 10 & 1 & 1 & 0 & 0 & 1 \\
\hline
\multicolumn{2}{|c|}{$Z_i$} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\multicolumn{3}{|c|}{$C_i - Z_i$} & 1 & -1 & 0 & 0 & 0 \\
\hline
\end{tabularx}
\begin{tabularx}{\linewidth}{|Y|Y|Y|r|Y|Y|Y|Y|Y|}
\hline
Max & \multicolumn{2}{|c|}{$C_i$} & 1 & -1 & 0 & 0 & 0 \\
\hline
$C_B$ & B & b & $x_1$ & $x_2$ & $x_3$ & $x_4$ & $x_5$ \\
\hline
0 & $x_4$ & 12 & 0 & -1 & 1 & 2 & 0 \\
\rowcolor{Red} 1 & $x_1$ & 4 & 1 & -1 & 0 & 1 & 0 \\
0 & $x_6$ & 6 & 0 & 2 & 0 & -1 & 1 \\
\hline
\multicolumn{2}{|c|}{$Z_i$} & 4 & 1 & -1 & 0 & 1 & 0 \\
\hline
\multicolumn{3}{|c|}{$C_i - Z_i$} & 0 & 0 & 0 & -1 & 0 \\
\hline
\end{tabularx}
La solution optimale est donc $S_1 = 4$.
\section{Exercice 4}
On considère le programme linéaire suivant~:
\begin{align*}
\text{Max} Z = 3x_1 + 2x_2 \\
\left\{
\begin{array}{l}
x_1 + 2x_2 \geq 5 \\
x_1 + x_2 = 2 \\
-7x_1 - 5x_2 \geq -35 \\
x_1 \geq 0 \\
\end{array}
\right.
\end{align*}
\subsection{}
Résoudre le programme par la méthode du simplexe, et déduire la solution optimale $S_1$.
\begin{align*}
\left\{
\begin{array}{l}
x_1 + 2x_2 - x_3 + x_4 = 5 \\
x_1 + x_2 = 2 \\
7x_1 + 5x_2 + x_5 = 35 \\
x_1, x_2, x_3, x_4, x_5 \geq 0 \\
\end{array}
\right.
\end{align*}
\begin{tabularx}{\linewidth}{|Y|Y|Y|Y|Y|Y|Y|Y|}
\hline
Max & \multicolumn{2}{|c|}{$C_i$} & 3 & 2 & 0 & 0 & 0 \\
\hline
$C_B$ & B & b & $x_1$ & $x_2$ & $x_3$ & $x_4$ & $x_5$ \\
\hline
0 & $x_3$ & 5 & 1 & 2 & -1 & 1 & 0 \\
0 & $x_4$ & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & $x_5$ & 35 & 7 & 5 & 0 & 0 & 1 \\
\hline
\multicolumn{2}{|c|}{$Z_i$} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\multicolumn{3}{|c|}{$C_i - Z_i$} & 3 & 2 & 0 & 0 & 0 \\
\hline
\end{tabularx}
\begin{tabularx}{\linewidth}{|Y|Y|Y|r|Y|Y|Y|Y|}
\hline
Max & \multicolumn{2}{|c|}{$C_i$} & 3 & 2 & 0 & 0 & 0 \\
\hline
$C_B$ & B & b & $x_1$ & $x_2$ & $x_3$ & $x_4$ & $x_5$ \\
\hline
0 & $x_3$ & 3 & 0 & 1 & -1 & 1 & 0 \\
\rowcolor{Red}
3 & $x_1$ & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & $x_5$ & 21 & 0 & -2 & 0 & 0 & 1 \\
\hline
\multicolumn{2}{|c|}{$Z_i$} & 6 & 3 & 3 & 0 & 0 & 0 \\
\hline
\multicolumn{3}{|c|}{$C_i - Z_i$} & 0 & -1 & 0 & 0 & 0 \\
\hline
\end{tabularx}
La solution optimale est donc $S_1 = 6$.
\end{document}