187 lines
5.9 KiB
TeX
187 lines
5.9 KiB
TeX
\documentclass[a4paper,french,11pt]{article}
|
|
|
|
\title{
|
|
Théorie du signal --- TD1
|
|
\\ \large Décomposition en Série de Fourier
|
|
}
|
|
\author{}
|
|
\date{Dernière compilation~: \today{} à \currenttime}
|
|
|
|
\usepackage{../../cours}
|
|
\usepackage{enumitem}
|
|
\usepackage{xfrac}
|
|
\usepackage{tikz}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\section{I}
|
|
|
|
\subsection{Signal carré}
|
|
|
|
Soit le signal carré $x(t)$, $T_0$-périodique tel que~:
|
|
\begin{align*}
|
|
x(t) =
|
|
\left\{
|
|
\begin{array}{ll}
|
|
-1 \quad \forall\, t \in [-\frac{T_0}{2};0] \\
|
|
1 \quad \forall\, t \in [0;\frac{T_0}{2}] \\
|
|
\end{array}
|
|
\right.
|
|
\end{align*}
|
|
|
|
\subsubsection{Tracer le signal $x(t)$}
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
|
|
\draw[help lines, dashed] (-7,-2) grid (7,2);
|
|
\draw[-latex] (-7,0) -- (7,0) node[below]{$t$};
|
|
\draw[-latex] (0,-2) -- (0,2) node[left]{$x(t)$};
|
|
|
|
\foreach \i in {-6, -4, -2, 0, 2, 4, 6}{
|
|
\draw[very thick, teal]
|
|
(\i-1,1) -- (\i-1,-1)
|
|
plot[domain=\i-1:\i]({\x}, {-1})
|
|
(\i,1) -- (\i,-1)
|
|
plot[domain=\i:\i+1]({\x}, {1})
|
|
;
|
|
}
|
|
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
|
|
\subsubsection{Calculer les coefficients de Fourier réels $a_0, a_n, b_n$ du signal $x(t)$}
|
|
|
|
$x$ est impaire donc $a_0 = a_n = 0$.
|
|
|
|
\begin{tabularx}{\linewidth}{XX}
|
|
{
|
|
\begin{equation*}
|
|
\text{formule~:} \quad b_n = \frac{2}{T_0} \int_{(T_0)} x(t) \sin(n\omega_0 t) \dif t
|
|
\end{equation*}
|
|
\vspace{4cm}
|
|
\begin{equation*}
|
|
x(t) = \sum_{n=1}^{+\infty} \frac{2}{n\pi}(1 - (-1)^n) \sin(n\omega_0 t)
|
|
\end{equation*}
|
|
} &
|
|
{
|
|
\begin{align*}
|
|
b_n &= \frac{4}{T_0} \int_0^{T_0/2} 1 \sin(n\omega_0 t) \dif t \\
|
|
&= \frac{4}{T_0} \left[\frac{-\cos(n\omega_0 t)}{n\omega_0}\right]_0^{T_0/2} \\
|
|
&= \frac{4}{T_0} \left(\frac{-\cos(n2\pi f_0 \frac{T_0}{2}) + 1}{n2\pi f_0}\right) \\
|
|
&= 2 \left(\frac{-\cos(n\pi) + 1}{n\pi}\right) \\
|
|
&= \frac{2}{n\pi} (-\cos(n\pi) + 1) \\
|
|
&= \frac{2}{n\pi} (-(-1)^n + 1) \\
|
|
b_n &= \boxed{\frac{2}{n\pi} (1 -(-1)^n)}
|
|
\end{align*}
|
|
} \\
|
|
\end{tabularx}
|
|
|
|
|
|
\subsubsection{Tracer la DSP du signal $x(t)$}
|
|
|
|
\begin{align*}
|
|
|c_n|^2 = |-j\frac{1}{2}b_n|^2 = \frac{1}{4}b_n^2 = \frac{1}{4}(\frac{2}{n\pi})^2(1 - (-1)^n)^2
|
|
\end{align*}
|
|
\begin{align*}
|
|
S_x(f) = \sum_{-\infty}^{+\infty} |c_n|^2 \implies
|
|
\left\{
|
|
\begin{array}{l}
|
|
\text{si } n \text{ est pair, } b_n = 0 \implies |c_n|^2 = 0 \\
|
|
\text{si } n \text{ est impair, } b_n = \frac{4}{n\pi} \implies |c_n|^2 = \frac{4}{(n\pi)^2} \\
|
|
\end{array}
|
|
\right.
|
|
\end{align*}
|
|
|
|
\subsection{Signal en dent de scie}
|
|
|
|
Soit le signal $x(t)$, $T_0$-périodique tel que~:
|
|
\begin{align*}
|
|
x(t) = A \times \frac{1}{T_0}t \quad \forall\, t \in [0;T_0] \\
|
|
\end{align*}
|
|
|
|
\subsubsection{Tracer le signal $x(t)$}
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
|
|
\draw[help lines, dashed] (-8,-2) grid (8,2);
|
|
\draw[-latex] (-8,0) -- (8,0) node[below]{$t$};
|
|
\draw[-latex] (0,-2) -- (0,2) node[left]{$x(t)$};
|
|
|
|
\foreach \i in {-8, -6, -4, -2, 0, 2, 4, 6}{
|
|
\draw[very thick, teal]
|
|
plot[domain=\i:\i+2]({\x}, {1.7*(\x-\i)/2})
|
|
(\i+2,0) -- (\i+2,1.7)
|
|
;
|
|
}
|
|
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
|
|
\subsection{Signal porte}
|
|
|
|
Soit le signal $x(t)$, de largeur $T>0$ tel que~:
|
|
\begin{align*}
|
|
x(t) = A\Pi_r(t) =
|
|
\left\{
|
|
\begin{array}{ll}
|
|
A \quad \forall\, t \in [-\frac{T}{2};\frac{T}{2}] \\
|
|
0 \text{ sinon} \\
|
|
\end{array}
|
|
\right.
|
|
\end{align*}
|
|
|
|
\subsubsection{Calculer $X(f)$, la TF de $x(t)$. Représenter la DSE de $x(t)$}
|
|
\begin{equation*}
|
|
X(f) = \int_{\mathbb{R}} x(t) e^{-j2\pi ft} \dif t
|
|
\end{equation*}
|
|
\begin{align*}
|
|
X(f) &= \int_{-T/2}^{T/2} A e^{-j2\pi ft} \dif t \\
|
|
&= A \left[\frac{e^{-j2\pi ft}}{-j2\pi f}\right]_{-T/2}^{T/2} \\
|
|
&= A \left(\frac{-e^{-j\pi fT} - e^{j\pi fT}}{-j2\pi f}\right) \\
|
|
&= A \left(\frac{e^{j\pi fT} - e^{-j\pi fT}}{-j2\pi f}\right) \\
|
|
&= A \frac{\sin(\pi fT)}{\pi f \color{red}{T}}\color{red}{T} \\
|
|
X(f) &= \boxed{AT \text{sinc}(fT)}
|
|
\end{align*}
|
|
|
|
\paragraph{DSE}
|
|
|
|
\begin{align*}
|
|
S_x(f) &= |X(f)|^2 \\
|
|
&= A^2T^2\text{sinc}^2(fT)
|
|
\end{align*}
|
|
|
|
\begin{align*}
|
|
\text{Rappel~: } &\text{sinc}(0) = 1 \\
|
|
&\text{sinc}(fT) = \frac{\sin(\pi fT)}{\pi fT}
|
|
\end{align*}
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
%TODO plot this
|
|
\draw[help lines, dashed] (-7,-2) grid (7,2);
|
|
\draw[-latex] (-7,0) -- (7,0) node[below]{$t$};
|
|
\draw[-latex] (0,-2) -- (0,2) node[left]{$x(t)$};
|
|
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
|
|
\subsubsection{Que vaut $\int_{\mathbb{R}} S_x(f) \dif f$~?}
|
|
|
|
Calculer l'intégrale dans le domaine fréquentiel serait compliqué.
|
|
Mais d'après le théorême de Parseval~:
|
|
|
|
\begin{align*}
|
|
E = \int_{\mathbb{R}} S_x(f) \dif f
|
|
&= \int_{\mathbb{R}} |x(t)|^2 \dif t \\
|
|
&= \int_{-\pi/2}^{\pi/2} A^2 \dif t \\
|
|
&= A^2 [t]_{-T/2}^{T/2} \\
|
|
&= A^2 T
|
|
\end{align*}
|
|
|
|
\section{II}
|
|
|
|
\end{document}
|