\documentclass[a4paper,french,11pt]{article} \title{ Théorie du signal --- TD1 \\ \large Décomposition en Série de Fourier } \author{} \date{Dernière compilation~: \today{} à \currenttime} \usepackage{../../cours} \usepackage{enumitem} \usepackage{xfrac} \usepackage{tikz} \begin{document} \maketitle \section{I} \subsection{Signal carré} Soit le signal carré $x(t)$, $T_0$-périodique tel que~: \begin{align*} x(t) = \left\{ \begin{array}{ll} -1 \quad \forall\, t \in [-\frac{T_0}{2};0] \\ 1 \quad \forall\, t \in [0;\frac{T_0}{2}] \\ \end{array} \right. \end{align*} \subsubsection{Tracer le signal $x(t)$} \begin{center} \begin{tikzpicture} \draw[help lines, dashed] (-7,-2) grid (7,2); \draw[-latex] (-7,0) -- (7,0) node[below]{$t$}; \draw[-latex] (0,-2) -- (0,2) node[left]{$x(t)$}; \foreach \i in {-6, -4, -2, 0, 2, 4, 6}{ \draw[very thick, teal] (\i-1,1) -- (\i-1,-1) plot[domain=\i-1:\i]({\x}, {-1}) (\i,1) -- (\i,-1) plot[domain=\i:\i+1]({\x}, {1}) ; } \end{tikzpicture} \end{center} \subsubsection{Calculer les coefficients de Fourier réels $a_0, a_n, b_n$ du signal $x(t)$} $x$ est impaire donc $a_0 = a_n = 0$. \begin{tabularx}{\linewidth}{XX} { \begin{equation*} \text{formule~:} \quad b_n = \frac{2}{T_0} \int_{(T_0)} x(t) \sin(n\omega_0 t) \dif t \end{equation*} \vspace{4cm} \begin{equation*} x(t) = \sum_{n=1}^{+\infty} \frac{2}{n\pi}(1 - (-1)^n) \sin(n\omega_0 t) \end{equation*} } & { \begin{align*} b_n &= \frac{4}{T_0} \int_0^{T_0/2} 1 \sin(n\omega_0 t) \dif t \\ &= \frac{4}{T_0} \left[\frac{-\cos(n\omega_0 t)}{n\omega_0}\right]_0^{T_0/2} \\ &= \frac{4}{T_0} \left(\frac{-\cos(n2\pi f_0 \frac{T_0}{2}) + 1}{n2\pi f_0}\right) \\ &= 2 \left(\frac{-\cos(n\pi) + 1}{n\pi}\right) \\ &= \frac{2}{n\pi} (-\cos(n\pi) + 1) \\ &= \frac{2}{n\pi} (-(-1)^n + 1) \\ b_n &= \boxed{\frac{2}{n\pi} (1 -(-1)^n)} \end{align*} } \\ \end{tabularx} \subsubsection{Tracer la DSP du signal $x(t)$} \begin{align*} |c_n|^2 = |-j\frac{1}{2}b_n|^2 = \frac{1}{4}b_n^2 = \frac{1}{4}(\frac{2}{n\pi})^2(1 - (-1)^n)^2 \end{align*} \begin{align*} S_x(f) = \sum_{-\infty}^{+\infty} |c_n|^2 \implies \left\{ \begin{array}{l} \text{si } n \text{ est pair, } b_n = 0 \implies |c_n|^2 = 0 \\ \text{si } n \text{ est impair, } b_n = \frac{4}{n\pi} \implies |c_n|^2 = \frac{4}{(n\pi)^2} \\ \end{array} \right. \end{align*} \subsection{Signal en dent de scie} Soit le signal $x(t)$, $T_0$-périodique tel que~: \begin{align*} x(t) = A \times \frac{1}{T_0}t \quad \forall\, t \in [0;T_0] \\ \end{align*} \subsubsection{Tracer le signal $x(t)$} \begin{center} \begin{tikzpicture} \draw[help lines, dashed] (-8,-2) grid (8,2); \draw[-latex] (-8,0) -- (8,0) node[below]{$t$}; \draw[-latex] (0,-2) -- (0,2) node[left]{$x(t)$}; \foreach \i in {-8, -6, -4, -2, 0, 2, 4, 6}{ \draw[very thick, teal] plot[domain=\i:\i+2]({\x}, {1.7*(\x-\i)/2}) (\i+2,0) -- (\i+2,1.7) ; } \end{tikzpicture} \end{center} \subsection{Signal porte} Soit le signal $x(t)$, de largeur $T>0$ tel que~: \begin{align*} x(t) = A\Pi_r(t) = \left\{ \begin{array}{ll} A \quad \forall\, t \in [-\frac{T}{2};\frac{T}{2}] \\ 0 \text{ sinon} \\ \end{array} \right. \end{align*} \subsubsection{Calculer $X(f)$, la TF de $x(t)$. Représenter la DSE de $x(t)$} \begin{equation*} X(f) = \int_{\mathbb{R}} x(t) e^{-j2\pi ft} \dif t \end{equation*} \begin{align*} X(f) &= \int_{-T/2}^{T/2} A e^{-j2\pi ft} \dif t \\ &= A \left[\frac{e^{-j2\pi ft}}{-j2\pi f}\right]_{-T/2}^{T/2} \\ &= A \left(\frac{-e^{-j\pi fT} - e^{j\pi fT}}{-j2\pi f}\right) \\ &= A \left(\frac{e^{j\pi fT} - e^{-j\pi fT}}{-j2\pi f}\right) \\ &= A \frac{\sin(\pi fT)}{\pi f \color{red}{T}}\color{red}{T} \\ X(f) &= \boxed{AT \text{sinc}(fT)} \end{align*} \paragraph{DSE} \begin{align*} S_x(f) &= |X(f)|^2 \\ &= A^2T^2\text{sinc}^2(fT) \end{align*} \begin{align*} \text{Rappel~: } &\text{sinc}(0) = 1 \\ &\text{sinc}(fT) = \frac{\sin(\pi fT)}{\pi fT} \end{align*} \begin{center} \begin{tikzpicture} %TODO plot this \draw[help lines, dashed] (-7,-2) grid (7,2); \draw[-latex] (-7,0) -- (7,0) node[below]{$t$}; \draw[-latex] (0,-2) -- (0,2) node[left]{$x(t)$}; \end{tikzpicture} \end{center} \subsubsection{Que vaut $\int_{\mathbb{R}} S_x(f) \dif f$~?} Calculer l'intégrale dans le domaine fréquentiel serait compliqué. Mais d'après le théorême de Parseval~: \begin{align*} E = \int_{\mathbb{R}} S_x(f) \dif f &= \int_{\mathbb{R}} |x(t)|^2 \dif t \\ &= \int_{-\pi/2}^{\pi/2} A^2 \dif t \\ &= A^2 [t]_{-T/2}^{T/2} \\ &= A^2 T \end{align*} \section{II} \end{document}