107 lines
3.1 KiB
TeX
107 lines
3.1 KiB
TeX
\documentclass[a4paper,french,12pt]{article}
|
|
|
|
\title{Logique Programmable --- Exercices}
|
|
\author{Catherine MARECHAL --- \href{mailto:catherine.marechal@efrei.fr}{\nolinkurl{catherine.marechal@efrei.fr}}}
|
|
\date{Dernière compilation~: \today{} à \currenttime}
|
|
|
|
\usepackage{../../cours}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\section{Simplification des fonctions logiques}
|
|
\subsection{Exercice 1}
|
|
\subsection{Exercice 2}
|
|
\subsection{Exercice 3}
|
|
\subsection{Exercice 4}
|
|
\subsection{Exercice 5}
|
|
\subsection{Exercice 6}
|
|
\subsection{Exercice 7}
|
|
|
|
\section{Circuits de logique combinatoire}
|
|
\subsection{Exercice 1}
|
|
|
|
\includegraphics[width=0.6\linewidth]{./img/2.1.png}
|
|
|
|
\subsection{Exercice 2}
|
|
|
|
a/ Élaborer l'équation logique $F(S_1,S_0,C,a,b)$ du circuit ci-dessous.
|
|
|
|
\includegraphics[width=\linewidth]{./img/2.2.png}
|
|
|
|
\begin{equation*}
|
|
F = \bar{c} + \overline{S_0}(ab + \bar{a}\bar{b}S_1)
|
|
\end{equation*}
|
|
|
|
b/ Compléter le tableau suivant pour C = 0~:
|
|
|
|
$F = \bar{c}$
|
|
|
|
\begin{tabularx}{0.8\linewidth}{cccY}
|
|
\toprule
|
|
C & $S_1$ & $S_0$ & $F(a,b)$ \\
|
|
\midrule
|
|
0 & 0 & 0 & 1 \\
|
|
0 & 0 & 1 & 1 \\
|
|
0 & 1 & 0 & 1 \\
|
|
0 & 1 & 1 & 1 \\
|
|
\bottomrule
|
|
\end{tabularx}
|
|
|
|
c/ Compléter le tableau suivant pour C = 1~:
|
|
|
|
$F = \overline{S_0}(ab + \bar{a}\bar{b}S_1)$
|
|
|
|
\begin{tabularx}{0.8\linewidth}{cccY}
|
|
\toprule
|
|
C & $S_1$ & $S_0$ & $F(a,b)$ \\
|
|
\midrule
|
|
1 & 0 & 0 & $ab$ \\
|
|
1 & 0 & 1 & 0 \\
|
|
1 & 1 & 0 & $ab + \bar{a}\bar{b}$ \\
|
|
1 & 1 & 1 & 0 \\
|
|
\bottomrule
|
|
\end{tabularx}
|
|
|
|
\subsection{Exercice 3}
|
|
|
|
Soit le schéma de $H(A,B,C,D)$ utilisant un multiplexeur à 3 entrées d'adresse.
|
|
|
|
\includegraphics[width=0.6\linewidth]{./img/2.3.png}
|
|
|
|
a/ Donner la table de vérité de la fonction $H$.
|
|
|
|
\begin{tabularx}{0.7\linewidth}{X|Y|YYY|Y}
|
|
\toprule
|
|
& D & A & B & C & H \\
|
|
\midrule
|
|
0 & 0 & 0 & 0 & 0 & 0 \\
|
|
1 & 0 & 0 & 0 & 1 & 0 \\
|
|
2 & 0 & 0 & 1 & 0 & 0 \\
|
|
3 & 0 & 0 & 1 & 1 & 0 \\
|
|
4 & 0 & 1 & 0 & 0 & 0 \\
|
|
5 & 0 & 1 & 0 & 1 & 0 \\
|
|
6 & 0 & 1 & 1 & 0 & 1 \\
|
|
7 & 0 & 1 & 1 & 1 & 0 \\
|
|
\midrule
|
|
8 (0) & 1 & 0 & 0 & 0 & 0 \\
|
|
9 (1) & 1 & 0 & 0 & 1 & 0 \\
|
|
10 (2) & 1 & 0 & 1 & 0 & 1 \\
|
|
11 (3) & 1 & 0 & 1 & 1 & 1 \\
|
|
12 (4) & 1 & 1 & 0 & 0 & 0 \\
|
|
13 (5) & 1 & 1 & 0 & 1 & 1 \\
|
|
14 (6) & 1 & 1 & 1 & 0 & 1 \\
|
|
15 (7) & 1 & 1 & 1 & 1 & 0 \\
|
|
\bottomrule
|
|
\end{tabularx}
|
|
|
|
b/ Exprimer $H(A,B,C,D)$ sous la forme disjonctive.
|
|
|
|
\begin{equation*}
|
|
H(A,B,C,D) = AB\bar{C}\bar{D} + \bar{A}B\bar{C}D + \bar{A}BCD + A\bar{B}CD + AB\bar{C}D
|
|
\end{equation*}
|
|
|
|
\subsection{Exercice 4}
|
|
|
|
\end{document}
|