Generalize discriminant for equa diff 2nd ordre
This commit is contained in:
parent
e0335b2b42
commit
eb97264985
1 changed files with 40 additions and 3 deletions
|
@ -408,7 +408,24 @@
|
||||||
\color{red}{y_0 = \lambda e^{r_1 x} + \mu e^{r_2 x}} \quad \text{ où } \lambda, \mu \in \mathbb{R}
|
\color{red}{y_0 = \lambda e^{r_1 x} + \mu e^{r_2 x}} \quad \text{ où } \lambda, \mu \in \mathbb{R}
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
|
|
||||||
\item si $\Delta = 0$, l'équation caractéristique possède une racine double $r_0 = \frac{-b}{2a}$
|
\item si $\Delta = 0$, l'équation caractéristique possède une racine double $r_0$~:
|
||||||
|
\begin{align*}
|
||||||
|
\left\{
|
||||||
|
\begin{array}{l}
|
||||||
|
r_0 = \frac{-b - \sqrt{\Delta}}{2a} \\\\
|
||||||
|
r_0 = \frac{-b + \sqrt{\Delta}}{2a} \\
|
||||||
|
\end{array}
|
||||||
|
\right.
|
||||||
|
\implies
|
||||||
|
\left\{
|
||||||
|
\begin{array}{l}
|
||||||
|
r_0 = \frac{-b - 0}{2a} \\\\
|
||||||
|
r_0 = \frac{-b + 0}{2a} \\
|
||||||
|
\end{array}
|
||||||
|
\right.
|
||||||
|
\implies
|
||||||
|
r_0 = \frac{-b}{2a}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
Les solutions de $(E_0)$ sont alors~:
|
Les solutions de $(E_0)$ sont alors~:
|
||||||
|
|
||||||
|
@ -423,8 +440,28 @@
|
||||||
r_2 = \alpha - i\beta \\
|
r_2 = \alpha - i\beta \\
|
||||||
\end{array}
|
\end{array}
|
||||||
\right.$
|
\right.$
|
||||||
|
\begin{align*}
|
||||||
On trouve $\alpha$ et $\beta$ avec la même formule que pour $\Delta > 0$, en prenant $\sqrt{\Delta} = i \sqrt{|\Delta|}$.
|
\left\{
|
||||||
|
\begin{array}{l}
|
||||||
|
r_1 = \frac{-b - \sqrt{\Delta}}{2a} \\\\
|
||||||
|
r_2 = \frac{-b + \sqrt{\Delta}}{2a} \\
|
||||||
|
\end{array}
|
||||||
|
\right.
|
||||||
|
\implies
|
||||||
|
\left\{
|
||||||
|
\begin{array}{l}
|
||||||
|
r_1 = \frac{-b - i\sqrt{|\Delta|}}{2a} \\\\
|
||||||
|
r_2 = \frac{-b + i\sqrt{|\Delta|}}{2a} \\
|
||||||
|
\end{array}
|
||||||
|
\right.
|
||||||
|
\implies
|
||||||
|
\left\{
|
||||||
|
\begin{array}{l}
|
||||||
|
\alpha = \frac{-b}{2a} \\\\
|
||||||
|
\beta = \frac{i\sqrt{|\Delta|}}{2a}\\
|
||||||
|
\end{array}
|
||||||
|
\right.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
Les solutions de $(E_0)$ sont alors~:
|
Les solutions de $(E_0)$ sont alors~:
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue