Add alpha and beta to coin par coeur
This commit is contained in:
parent
08144275ed
commit
c23297c234
1 changed files with 1 additions and 1 deletions
|
@ -153,7 +153,7 @@
|
|||
\midrule
|
||||
\multicolumn{2}{l}{$ay' + by = f(x)$} & $y_0 + \lambda e^{rx} \quad \text{ avec } r = \frac{-b}{a}$ & \makecell{$y_0$ solution particulière de \\ $ay' + by = f(x)$ \\ $f$ une fonction et $a, b, \lambda\in\mathbb{R}$} \\
|
||||
\midrule
|
||||
\multirow{3}{*}{$ay'' + by' + cy = 0$} & $\Delta > 0$ & $\lambda e^{r_1 x} + \mu e^{r_2 x} + y_1$ & \multirow{3}{*}{$\lambda, \mu \in \mathbb{R}$, $y_1$ solution particulière} \\
|
||||
\multirow{3}{*}{$ay'' + by' + cy = 0$} & $\Delta > 0$ & $\lambda e^{r_1 x} + \mu e^{r_2 x} + y_1$ & \multirowcell{3}[0pt][c]{$\lambda, \mu \in \mathbb{R}$, $y_1$ solution particulière \\ $\alpha = \frac{-b}{2a} \quad \beta = \frac{\sqrt{|\Delta|}}{2a}$} \\
|
||||
\cline{2-3}
|
||||
& $\Delta = 0$ & $(\lambda x + \mu) e^{r_0 x} + y_1$ & \\
|
||||
\cline{2-3}
|
||||
|
|
Loading…
Reference in a new issue