Add first exercices
This commit is contained in:
parent
b8c7f1c91c
commit
4cc92642d2
1 changed files with 102 additions and 8 deletions
|
@ -5,21 +5,114 @@
|
|||
\date{Dernière compilation~: \today{} à \currenttime}
|
||||
|
||||
\usepackage{../../cours}
|
||||
\usepackage{enumitem}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\section{Simplification des fonctions logiques}
|
||||
|
||||
\subsection{Exercice 1}
|
||||
|
||||
\begin{multicols}{4}
|
||||
|
||||
\begin{enumerate}[label=\alph*)]
|
||||
|
||||
\item $a \cdot b \cdot c \cdot d = 1$
|
||||
|
||||
\item $a + b + c + d = 0$
|
||||
|
||||
\item $a + b + c + d = 1$
|
||||
|
||||
\item $a \cdot b \cdot c \cdot d = 0$
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
\end{multicols}
|
||||
|
||||
\subsection{Exercice 2}
|
||||
|
||||
\begin{enumerate}[label=\alph*)]
|
||||
|
||||
\item \begin{align*}
|
||||
F(a, b, c) &= a\bar{b} + abc + a\bar{c} \\
|
||||
F(0,1,1) &= 0 \\
|
||||
F(1,1,0) &= 1 \\
|
||||
F(1,0,0) &= 1 \\
|
||||
\end{align*}
|
||||
|
||||
\item \begin{equation*}
|
||||
F(a, b) = \bar{a}\bar{b} + b = \bar{a} + b
|
||||
\end{equation*}
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{cc|c|c|c|c}
|
||||
\toprule
|
||||
$a$ & $b$ & $\bar{a}\bar{b}$ & $\bar{a}\bar{b} + b$ & $\bar{a}$ & $\bar{a} + b$ \\
|
||||
\midrule
|
||||
0 & 0 & 1 & 1 & 1 & 1 \\
|
||||
0 & 1 & 0 & 1 & 0 & 1 \\
|
||||
1 & 0 & 0 & 0 & 0 & 0 \\
|
||||
1 & 1 & 0 & 1 & 0 & 1 \\
|
||||
\midrule
|
||||
& & & $\uparrow$ & = & $\uparrow$ \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
\item \begin{align*}
|
||||
F(a, b, c) &= a\bar{b} + ab + ac \\
|
||||
&= a (\bar{b} + b + c) \\
|
||||
&= a (1 + c) \\
|
||||
&= a \cdot 1 = a
|
||||
\end{align*}
|
||||
|
||||
\item \begin{align*}
|
||||
F(a, b, c) &= \bar{a}\bar{b}c + a\bar{b}\bar{c} + a\bar{b}c + ab\bar{c} + abc \\
|
||||
&= \bar{a}\bar{b}c + a\bar{b}\bar{c} + ab\bar{c} + ac(b + \bar{b}) \\
|
||||
&= \bar{a}\bar{b}c + a\bar{b}\bar{c} + ab\bar{c} + ac \\
|
||||
&= \bar{a}\bar{b}c + a\bar{c} + ac \\
|
||||
&= \bar{a}\bar{b}c + a \\
|
||||
\end{align*}
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
\subsection{Exercice 3}
|
||||
|
||||
\begin{enumerate}[label=\alph*)]
|
||||
|
||||
\item \begin{align*}
|
||||
F_1 &= (a + b) \cdot (\bar{a} + \bar{b}) \\
|
||||
\overline{F_1} &= \overline{(a + b) \cdot (\bar{a} + \bar{b})} \\
|
||||
&= \overline{(a + b)} + \overline{(\bar{a} + \bar{b})} \\
|
||||
&= \bar{a}\bar{b} + ab \\
|
||||
&= \overline{a \oplus b} \\
|
||||
&= \bar{a} \oplus b = a \oplus \bar{b} \\
|
||||
\end{align*}
|
||||
|
||||
\item \begin{align*}
|
||||
F_2 &= a (c + d) + (\bar{a} + c) \cdot (\bar{b} + c + d) \\
|
||||
\overline{F_2} &= \overline{a (c + d) + (\bar{a} + c) \cdot (\bar{b} + c + d)} \\
|
||||
&= \overline{a (c + d)} \cdot \overline{(\bar{a} + c)} + \overline{(\bar{b} + c + d)} \\
|
||||
&= \overline{ac + ad} \cdot a\bar{c} + b\bar{c}\bar{d} \\
|
||||
&= \overline{ac} \cdot \overline{ad} \cdot a\bar{c} + b\bar{c}\bar{d} \\
|
||||
&= (\bar{a} + \bar{c}) \cdot (\bar{a} + \bar{d}) \cdot a\bar{c} + b\bar{c}\bar{d} \\
|
||||
% TODO: finish
|
||||
\end{align*}
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
\subsection{Exercice 4}
|
||||
|
||||
\subsection{Exercice 5}
|
||||
|
||||
\subsection{Exercice 6}
|
||||
|
||||
\subsection{Exercice 7}
|
||||
|
||||
\section{Circuits de logique combinatoire}
|
||||
|
||||
\subsection{Exercice 1}
|
||||
|
||||
\includegraphics[width=0.6\linewidth]{./img/2.1.png}
|
||||
|
@ -72,22 +165,22 @@
|
|||
|
||||
a/ Donner la table de vérité de la fonction $H$.
|
||||
|
||||
\begin{tabularx}{0.7\linewidth}{X|Y|YYY|Y}
|
||||
\begin{tabularx}{0.7\linewidth}{X|YYY|Y|Y}
|
||||
\toprule
|
||||
& D & A & B & C & H \\
|
||||
& A & B & C & D & H \\
|
||||
\midrule
|
||||
0 & 0 & 0 & 0 & 0 & 0 \\
|
||||
1 & 0 & 0 & 0 & 1 & 0 \\
|
||||
2 & 0 & 0 & 1 & 0 & 0 \\
|
||||
3 & 0 & 0 & 1 & 1 & 0 \\
|
||||
3 & 0 & 0 & 1 & 1 & 1 \\
|
||||
4 & 0 & 1 & 0 & 0 & 0 \\
|
||||
5 & 0 & 1 & 0 & 1 & 0 \\
|
||||
5 & 0 & 1 & 0 & 1 & 1 \\
|
||||
6 & 0 & 1 & 1 & 0 & 1 \\
|
||||
7 & 0 & 1 & 1 & 1 & 0 \\
|
||||
\midrule
|
||||
8 (0) & 1 & 0 & 0 & 0 & 0 \\
|
||||
9 (1) & 1 & 0 & 0 & 1 & 0 \\
|
||||
10 (2) & 1 & 0 & 1 & 0 & 1 \\
|
||||
10 (2) & 1 & 0 & 1 & 0 & 0 \\
|
||||
11 (3) & 1 & 0 & 1 & 1 & 1 \\
|
||||
12 (4) & 1 & 1 & 0 & 0 & 0 \\
|
||||
13 (5) & 1 & 1 & 0 & 1 & 1 \\
|
||||
|
@ -98,9 +191,10 @@
|
|||
|
||||
b/ Exprimer $H(A,B,C,D)$ sous la forme disjonctive.
|
||||
|
||||
\begin{equation*}
|
||||
H(A,B,C,D) = AB\bar{C}\bar{D} + \bar{A}B\bar{C}D + \bar{A}BCD + A\bar{B}CD + AB\bar{C}D
|
||||
\end{equation*}
|
||||
\begin{align*}
|
||||
H(A,B,C,D) &= \bar{A}\bar{B}CD + \bar{A}B\bar{C}D + \bar{A}BC\bar{D} + A\bar{B}CD + AB\bar{C}D + ABC\bar{D} \\
|
||||
&= \sum(3, 5, 6, 11, 13, 14)
|
||||
\end{align*}
|
||||
|
||||
\subsection{Exercice 4}
|
||||
|
||||
|
|
Loading…
Reference in a new issue