From 4cc92642d2061e2b1da5cbd09173d2dfdf037f06 Mon Sep 17 00:00:00 2001 From: "flyingscorpio@arch-desktop" Date: Sat, 18 Sep 2021 12:50:15 +0200 Subject: [PATCH] Add first exercices --- logique-programmable/exercices/main.tex | 110 ++++++++++++++++++++++-- 1 file changed, 102 insertions(+), 8 deletions(-) diff --git a/logique-programmable/exercices/main.tex b/logique-programmable/exercices/main.tex index 84022ce..7694b41 100644 --- a/logique-programmable/exercices/main.tex +++ b/logique-programmable/exercices/main.tex @@ -5,21 +5,114 @@ \date{Dernière compilation~: \today{} à \currenttime} \usepackage{../../cours} +\usepackage{enumitem} \begin{document} \maketitle \section{Simplification des fonctions logiques} + \subsection{Exercice 1} + + \begin{multicols}{4} + + \begin{enumerate}[label=\alph*)] + + \item $a \cdot b \cdot c \cdot d = 1$ + + \item $a + b + c + d = 0$ + + \item $a + b + c + d = 1$ + + \item $a \cdot b \cdot c \cdot d = 0$ + + \end{enumerate} + + \end{multicols} + \subsection{Exercice 2} + + \begin{enumerate}[label=\alph*)] + + \item \begin{align*} + F(a, b, c) &= a\bar{b} + abc + a\bar{c} \\ + F(0,1,1) &= 0 \\ + F(1,1,0) &= 1 \\ + F(1,0,0) &= 1 \\ + \end{align*} + + \item \begin{equation*} + F(a, b) = \bar{a}\bar{b} + b = \bar{a} + b + \end{equation*} + + \begin{center} + \begin{tabular}{cc|c|c|c|c} + \toprule + $a$ & $b$ & $\bar{a}\bar{b}$ & $\bar{a}\bar{b} + b$ & $\bar{a}$ & $\bar{a} + b$ \\ + \midrule + 0 & 0 & 1 & 1 & 1 & 1 \\ + 0 & 1 & 0 & 1 & 0 & 1 \\ + 1 & 0 & 0 & 0 & 0 & 0 \\ + 1 & 1 & 0 & 1 & 0 & 1 \\ + \midrule + & & & $\uparrow$ & = & $\uparrow$ \\ + \bottomrule + \end{tabular} + \end{center} + + \item \begin{align*} + F(a, b, c) &= a\bar{b} + ab + ac \\ + &= a (\bar{b} + b + c) \\ + &= a (1 + c) \\ + &= a \cdot 1 = a + \end{align*} + + \item \begin{align*} + F(a, b, c) &= \bar{a}\bar{b}c + a\bar{b}\bar{c} + a\bar{b}c + ab\bar{c} + abc \\ + &= \bar{a}\bar{b}c + a\bar{b}\bar{c} + ab\bar{c} + ac(b + \bar{b}) \\ + &= \bar{a}\bar{b}c + a\bar{b}\bar{c} + ab\bar{c} + ac \\ + &= \bar{a}\bar{b}c + a\bar{c} + ac \\ + &= \bar{a}\bar{b}c + a \\ + \end{align*} + + \end{enumerate} + \subsection{Exercice 3} + + \begin{enumerate}[label=\alph*)] + + \item \begin{align*} + F_1 &= (a + b) \cdot (\bar{a} + \bar{b}) \\ + \overline{F_1} &= \overline{(a + b) \cdot (\bar{a} + \bar{b})} \\ + &= \overline{(a + b)} + \overline{(\bar{a} + \bar{b})} \\ + &= \bar{a}\bar{b} + ab \\ + &= \overline{a \oplus b} \\ + &= \bar{a} \oplus b = a \oplus \bar{b} \\ + \end{align*} + + \item \begin{align*} + F_2 &= a (c + d) + (\bar{a} + c) \cdot (\bar{b} + c + d) \\ + \overline{F_2} &= \overline{a (c + d) + (\bar{a} + c) \cdot (\bar{b} + c + d)} \\ + &= \overline{a (c + d)} \cdot \overline{(\bar{a} + c)} + \overline{(\bar{b} + c + d)} \\ + &= \overline{ac + ad} \cdot a\bar{c} + b\bar{c}\bar{d} \\ + &= \overline{ac} \cdot \overline{ad} \cdot a\bar{c} + b\bar{c}\bar{d} \\ + &= (\bar{a} + \bar{c}) \cdot (\bar{a} + \bar{d}) \cdot a\bar{c} + b\bar{c}\bar{d} \\ + % TODO: finish + \end{align*} + + \end{enumerate} + \subsection{Exercice 4} + \subsection{Exercice 5} + \subsection{Exercice 6} + \subsection{Exercice 7} \section{Circuits de logique combinatoire} + \subsection{Exercice 1} \includegraphics[width=0.6\linewidth]{./img/2.1.png} @@ -72,22 +165,22 @@ a/ Donner la table de vérité de la fonction $H$. - \begin{tabularx}{0.7\linewidth}{X|Y|YYY|Y} + \begin{tabularx}{0.7\linewidth}{X|YYY|Y|Y} \toprule - & D & A & B & C & H \\ + & A & B & C & D & H \\ \midrule 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ - 3 & 0 & 0 & 1 & 1 & 0 \\ + 3 & 0 & 0 & 1 & 1 & 1 \\ 4 & 0 & 1 & 0 & 0 & 0 \\ - 5 & 0 & 1 & 0 & 1 & 0 \\ + 5 & 0 & 1 & 0 & 1 & 1 \\ 6 & 0 & 1 & 1 & 0 & 1 \\ 7 & 0 & 1 & 1 & 1 & 0 \\ \midrule 8 (0) & 1 & 0 & 0 & 0 & 0 \\ 9 (1) & 1 & 0 & 0 & 1 & 0 \\ - 10 (2) & 1 & 0 & 1 & 0 & 1 \\ + 10 (2) & 1 & 0 & 1 & 0 & 0 \\ 11 (3) & 1 & 0 & 1 & 1 & 1 \\ 12 (4) & 1 & 1 & 0 & 0 & 0 \\ 13 (5) & 1 & 1 & 0 & 1 & 1 \\ @@ -98,9 +191,10 @@ b/ Exprimer $H(A,B,C,D)$ sous la forme disjonctive. - \begin{equation*} - H(A,B,C,D) = AB\bar{C}\bar{D} + \bar{A}B\bar{C}D + \bar{A}BCD + A\bar{B}CD + AB\bar{C}D - \end{equation*} + \begin{align*} + H(A,B,C,D) &= \bar{A}\bar{B}CD + \bar{A}B\bar{C}D + \bar{A}BC\bar{D} + A\bar{B}CD + AB\bar{C}D + ABC\bar{D} \\ + &= \sum(3, 5, 6, 11, 13, 14) + \end{align*} \subsection{Exercice 4}