

Mise en place d'un serveur LDAP avec OpenLDAP sous Linux Superviseur : Patrice Krzanik

Tunui Franken

0

Table des matières

1	But de la manœuvre	3		
2	Prérequis	3		
3	Schéma LDAP	4		
4	Configuration des serveurs DNS4.1Installation de BIND	5 5 6 7		
5	Configuration des serveurs LDAP	8		
6	Configuration de la réplication LDAP			
7	7 Ajout des clients au domaine LDAP			
8	3 Sources			

1 But de la manœuvre

Nous allons implémenter une topologie de type Active Directory, mais avec OpenLDAP sous Linux. Nous aurons deux serveurs LDAP pour la redondance et deux clients faisant partie du domaine.

2 Prérequis

Conformément au but de la manœuvre (voir 1), nous allons utiliser plusieurs VM :

- Deux VM pour faire les serveurs LDAP, contenant une installation simple mais fonctionnelle de Debian 10 (Buster).
- Deux VM pour faire les clients. Peu importe leur OS, mais pour s'assurer que tout soit compatible, nous allons utiliser une VM sous Windows XP et une VM sous Xubuntu 20.04 (pour la légèreté).

On donne à toutes les machines une configuration réseau par pont.

On ne va pas couvrir l'installation des VM à proprement parler, mais nous configurons les machines de la façon suivante :

	Serveur Debian 1	Serveur Debian 2
RAM	1 Go	1 Go
Disque dur	8 Go	8 Go
Nom de l'ordinateur	debian-server-1	debian-server-2
Domaine	afpa.fr	afpa.fr
Mot de passe root	afpa	afpa
Utilisateur	Tunui Franken	Tunui Franken
Identifiant	administrateur	administrateur
Mot de passe utilisateur	afpa	afpa
Adresse IP	192.168.0.11/24	192.168.0.12/24
Passerelle	192.168.0.1	192.168.0.1

 \bigcirc

	Client Xubuntu	Client Windows XP
RAM	$1 { m Go}$	512 Mo
Disque dur	10 Go	10 Go
Nom de l'ordinateur	xubuntu-client	win-xp-client
Domaine	afpa.fr	afpa.fr
Mot de passe root	afpa	afpa
Utilisateur	Tunui Franken	Tunui Franken
Identifiant	tunui-franken	Tunui Franken
Mot de passe utilisateur	afpa	N/A
Adresse IP	192.168.0.9/24	192.168.0.10/24
Passerelle	192.168.0.1	192.168.0.1

3 Schéma LDAP

afpa

4 Configuration des serveurs DNS

Nous avons deux machines serveurs qui attendent l'installation des services qui nous intéressent. On va commencer par installer un serveur DNS sur chacune des deux machines.

De manière assez logique, debian-server-1 servira de serveur DNS principal et debian-server-2 de DNS secondaire.

Nous allons utiliser BIND.

4.1 Installation de BIND

Tout d'abord, on installe BIND sur chaque machine :

```
# apt install bind9
```

4.2 Configuration du serveur principal

On édite le fichier /etc/bind/named.conf.local pour déclarer notre zone :

```
zone "afpa.fr" {
   type master;
   file "/etc/bind/db.afpa.fr";
   allow-transfer { 192.168.0.12; };
};
```

On vérifie la syntaxe avec named-checkconf /etc/bind/named.conf.local.

Puis on configure la zone. On commence par créer le fichier nécessaire :

```
# cp /etc/bind/db.local /etc/bind/db.afpa.fr
```

```
Puis on édite /etc/bind/db.afpa.fr :
```

```
$TTL
       604800
$ORIGIN afpa.fr.
       IN
                       ns1.afpa.fr. admin.afpa.fr. (
0
               SOA
                                     2 ; Serial
                                  3600 ; Refresh
                                  3000 ; Retry
                               2419200 ; Expire
                                604800 ; Negative Cache TTL
                               )
;
       IN
0
               NS
                       ns1.afpa.fr.
0
       IN
               NS
                       ns2
                       192.168.0.11
       IN
               Α
ns1
ns2
       IN
               А
                       192.168.0.12
```


On vérifie la syntaxe avec named-checkzone afpa.fr /etc/bind/afpa.fr.

On peut maintenant redémarrer BIND :

```
# systemctl restart bind9
```

4.3 Configuration du serveur secondaire

Comme précédemment, on édite le fichier /etc/bind/named.conf.local pour déclarer notre zone.

```
zone "afpa.fr" {
   type slave;
   file "/var/cache/bind/db.afpa.fr";
   masters { 192.168.0.11; };
};
```

On vérifie la syntaxe avec named-checkconf /etc/bind/named.conf.local.

Ne pas oublier de redémarrer BIND :

```
# systemctl restart bind9
```

C'est tout, puisque c'est le master qui met à jour le slave.

4.4 Ajout de la résolution inverse

Dans le fichier /etc/bind/named.conf.local modifié plus tôt, il faut ajouter la zone inverse :

```
zone "0.168.192.in-addr.arpa." {
    type master;
    file "/etc/bind/db.192.168.0";
};
```

On crée le fichier de zone correspondant $(\tt db.192.168.0)$:

```
$TTL 604800
$ORIGIN 0.168.192.in-addr.arpa.
0
       IN
               SOA ns1.afpa.fr. admin.afpa.fr. (
                                    2; Serial
                                 3600 ; Refresh
                                 3000 ; Retry
                              2419200 ; Expire
                               604800 ; Negative Cache TTL
                              )
;
0
       IN
               NS
                        ns1.afpa.fr.
                        ns2.afpa.fr.
0
       IN
               NS
1
       IN
               PTR
                        ns1.afpa.fr.
```


2 IN PTR ns2.afpa.fr.

Et on redémarre le serveur :

```
# systemctl restart bind9
```

4.5 Changement de l'adresse du resolver

Maintenant que le DNS est configuré sur nos deux serveurs, il faut que leur fichier /etc/resolv.conf contienne la bonne entrée pour interroger le bon serveur DNS, en l'occurrence soi-même :

nameserver 127.0.0.1

Pour vérifier le bon fonctionnement, sur chaque machine on utilise la commande suivante :

```
$ host -t NS afpa.fr
```

On vérifie également que notre DNS sait interroger les serveurs racines :

\$ host debian.org

5 Configuration des serveurs LDAP

Il faut tout d'abord installer le serveur LDAP. Sur Debian il s'agit du paquet slapd. On va lui ajouter ldap-utils, un paquet utilisé pour configurer slapd et les dossiers.

```
# apt install slapd ldap-utils
```

Pendant l'installation on nous demande un mot de passe pour l'administrateur de l'annuaire LDAP. On va utiliser afpa.

On peut d'ores et déjà interagir avec l'annuaire LDAP. Par défaut, il a été préconfiguré avec le nom de domaine de notre DNS (qu'on a défini sur afpa.fr).

ldapsearch -x -b "dc=afpa,dc=fr"

On peut se connecter en tant qu'administrateur en utilisant le mot de passe défini pendant l'installation :

```
ldapsearch -x -D "cn=admin,dc=afpa,dc=fr" -W -b "dc=afpa,dc=fr"
```

- -x utilise l'authentification simple.
- -D utilise le Distinguished Name (DN) pour établir une connexion.
- -W permet de ne pas fournir le mot de passe dans la commande.
- -b utilise une base différente de celle par défaut pour la recherche.

Pour éviter de devoir spécifier la base à chaque fois, on va modifier le fichier /etc/ldap/ldap.conf. On décommente les lignes commençant par BASE et URI et on ajuste leur valeur :

BASE dc=apfa,dc=fr URI ldap://localhost:389

On teste si ça marche :

systemctl restart slapd
\$ ldapsearch -x

6 Configuration de la réplication LDAP

D'après la documentation OpenLDAP, il y a plusieurs possibilités pour la réplication :

- **Syncrepl** (LDAP Sync Replication) La solution la plus simple mais gourmande en bande passante et en charge.
- **Delta-syncrepl** Ne synchronise que les changements des attributs des objets, permettant une réplication "incrémentale".
- N-Way Multi-Provider Réplique sur plusieurs contrôleurs de domaines actifs.
 C'est surtout utile pour la redondance.
- MirrorMode Les contrôleurs de domaine se répliquent mutuellement. Des mises à jour de l'annuaire peuvent être envoyées à l'un ou à l'autre. Nécessite un équilibreur de charge.
- Syncrepl Proxy Mode Utile dans des cas précis de topologie de réseau avec par exemple des pares-feu.

Comme nous n'avons pas d'équilibrage de charge ni de proxy, nous allons utiliser le Delta-syncrepl.

7 Ajout des clients au domaine LDAP

La première chose à faire est de s'assurer que les clients ont comme configuration DNS les adresses IP de nos deux serveurs.

- Pour Xubuntu :
- Pour Windows XP :

On entre dans le menu Démarrer, puis un clic droit sur Mon Ordinateur, clic sur Propriétés. Dans l'onglet Nom de l'ordinateur, on clique sur Modifier pour rejoindre un domaine. Puis on coche Membre d'un domaine et on entre afpa.fr.

8 Sources

https://openclassrooms.com/fr/courses/857447-apprenez-le-fonctionnement-des-reseaux-tcp-ip/857163-le-service-dns

https://wiki.archlinux.org/index.php/OpenLDAP

https://wiki.debian.org/LDAP/OpenLDAPSetup

https://www.openldap.org/doc/admin24/replication.html

https://www.howtoforge.com/set-up-openldap-client-on-debian-10/

