efrei/logique-programmable/exercices/main.tex

203 lines
6.7 KiB
TeX

\documentclass[a4paper,french,12pt]{article}
\title{Logique Programmable --- Exercices}
\author{}
\date{Dernière compilation~: \today{} à \currenttime}
\usepackage{../../cours}
\usepackage{enumitem}
\begin{document}
\maketitle
\section{Simplification des fonctions logiques}
\subsection{Exercice 1}
\begin{multicols}{4}
\begin{enumerate}[label=\alph*)]
\item $a \cdot b \cdot c \cdot d = 1$
\item $a + b + c + d = 0$
\item $a + b + c + d = 1$
\item $a \cdot b \cdot c \cdot d = 0$
\end{enumerate}
\end{multicols}
\subsection{Exercice 2}
\begin{enumerate}[label=\alph*)]
\item \begin{align*}
F(a, b, c) &= a\bar{b} + abc + a\bar{c} \\
F(0,1,1) &= 0 \\
F(1,1,0) &= 1 \\
F(1,0,0) &= 1 \\
\end{align*}
\item \begin{equation*}
F(a, b) = \bar{a}\bar{b} + b = \bar{a} + b
\end{equation*}
\begin{center}
\begin{tabular}{cc|c|c|c|c}
\toprule
$a$ & $b$ & $\bar{a}\bar{b}$ & $\bar{a}\bar{b} + b$ & $\bar{a}$ & $\bar{a} + b$ \\
\midrule
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 \\
\midrule
& & & $\uparrow$ & = & $\uparrow$ \\
\bottomrule
\end{tabular}
\end{center}
\item \begin{align*}
F(a, b, c) &= a\bar{b} + ab + ac \\
&= a (\bar{b} + b + c) \\
&= a (1 + c) \\
&= a \cdot 1 = a
\end{align*}
\item \begin{align*}
F(a, b, c) &= \bar{a}\bar{b}c + a\bar{b}\bar{c} + a\bar{b}c + ab\bar{c} + abc \\
&= \bar{a}\bar{b}c + a\bar{b}\bar{c} + ab\bar{c} + ac(b + \bar{b}) \\
&= \bar{a}\bar{b}c + a\bar{b}\bar{c} + ab\bar{c} + ac \\
&= \bar{a}\bar{b}c + a\bar{c} + ac \\
&= \bar{a}\bar{b}c + a \\
\end{align*}
\end{enumerate}
\subsection{Exercice 3}
\begin{enumerate}[label=\alph*)]
\item \begin{align*}
F_1 &= (a + b) \cdot (\bar{a} + \bar{b}) \\
\overline{F_1} &= \overline{(a + b) \cdot (\bar{a} + \bar{b})} \\
&= \overline{(a + b)} + \overline{(\bar{a} + \bar{b})} \\
&= \bar{a}\bar{b} + ab \\
&= \overline{a \oplus b} \\
&= \bar{a} \oplus b = a \oplus \bar{b} \\
\end{align*}
\item \begin{align*}
F_2 &= a (c + d) + (\bar{a} + c) \cdot (\bar{b} + c + d) \\
\overline{F_2} &= \overline{a (c + d) + (\bar{a} + c) \cdot (\bar{b} + c + d)} \\
&= \overline{a (c + d)} \cdot \overline{(\bar{a} + c)} + \overline{(\bar{b} + c + d)} \\
&= \overline{ac + ad} \cdot a\bar{c} + b\bar{c}\bar{d} \\
&= \overline{ac} \cdot \overline{ad} \cdot a\bar{c} + b\bar{c}\bar{d} \\
&= (\bar{a} + \bar{c}) \cdot (\bar{a} + \bar{d}) \cdot a\bar{c} + b\bar{c}\bar{d} \\
&= (\bar{a} + \bar{a}\bar{d} + \bar{a}\bar{c} + \bar{c}\bar{d}) \cdot a\bar{c} + b\bar{c}\bar{d} \\
&= a\bar{c}\bar{d} + b\bar{c}\bar{d} \\
&= (a + b) \cdot \bar{c}\bar{d} \\
\end{align*}
\end{enumerate}
\subsection{Exercice 4}
\subsection{Exercice 5}
\subsection{Exercice 6}
\subsection{Exercice 7}
\section{Circuits de logique combinatoire}
\subsection{Exercice 1}
\includegraphics[width=0.6\linewidth]{./img/2.1.png}
\subsection{Exercice 2}
a/ Élaborer l'équation logique $F(S_1,S_0,C,a,b)$ du circuit ci-dessous.
\includegraphics[width=\linewidth]{./img/2.2.png}
\begin{equation*}
F = \bar{c} + \overline{S_0}(ab + \bar{a}\bar{b}S_1)
\end{equation*}
b/ Compléter le tableau suivant pour C = 0~:
$F = \bar{c}$
\begin{tabularx}{0.8\linewidth}{cccY}
\toprule
C & $S_1$ & $S_0$ & $F(a,b)$ \\
\midrule
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
\bottomrule
\end{tabularx}
c/ Compléter le tableau suivant pour C = 1~:
$F = \overline{S_0}(ab + \bar{a}\bar{b}S_1)$
\begin{tabularx}{0.8\linewidth}{cccY}
\toprule
C & $S_1$ & $S_0$ & $F(a,b)$ \\
\midrule
1 & 0 & 0 & $ab$ \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & $ab + \bar{a}\bar{b}$ \\
1 & 1 & 1 & 0 \\
\bottomrule
\end{tabularx}
\subsection{Exercice 3}
Soit le schéma de $H(A,B,C,D)$ utilisant un multiplexeur à 3 entrées d'adresse.
\includegraphics[width=0.6\linewidth]{./img/2.3.png}
a/ Donner la table de vérité de la fonction $H$.
\begin{tabularx}{0.7\linewidth}{X|YYY|Y|Y}
\toprule
& A & B & C & D & H \\
\midrule
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 1 & 1 & 1 \\
4 & 0 & 1 & 0 & 0 & 0 \\
5 & 0 & 1 & 0 & 1 & 1 \\
6 & 0 & 1 & 1 & 0 & 1 \\
7 & 0 & 1 & 1 & 1 & 0 \\
\midrule
8 (0) & 1 & 0 & 0 & 0 & 0 \\
9 (1) & 1 & 0 & 0 & 1 & 0 \\
10 (2) & 1 & 0 & 1 & 0 & 0 \\
11 (3) & 1 & 0 & 1 & 1 & 1 \\
12 (4) & 1 & 1 & 0 & 0 & 0 \\
13 (5) & 1 & 1 & 0 & 1 & 1 \\
14 (6) & 1 & 1 & 1 & 0 & 1 \\
15 (7) & 1 & 1 & 1 & 1 & 0 \\
\bottomrule
\end{tabularx}
b/ Exprimer $H(A,B,C,D)$ sous la forme disjonctive.
\begin{align*}
H(A,B,C,D) &= \bar{A}\bar{B}CD + \bar{A}B\bar{C}D + \bar{A}BC\bar{D} + A\bar{B}CD + AB\bar{C}D + ABC\bar{D} \\
&= \sum(3, 5, 6, 11, 13, 14)
\end{align*}
\subsection{Exercice 4}
\end{document}