efrei/theorie-signal/exercices/td1.tex

337 lines
13 KiB
TeX

\documentclass[a4paper,french,11pt]{article}
\title{
Théorie du signal --- TD1
\\ \large Décomposition en Série de Fourier
}
\author{}
\date{Dernière compilation~: \today{} à \currenttime}
\usepackage{../../cours}
\usepackage{enumitem}
\usepackage{xfrac}
\usepackage{tikz}
\begin{document}
\maketitle
\section{I}
\subsection{Signal carré}
Soit le signal carré $x(t)$, $T_0$-périodique tel que~:
\begin{align*}
x(t) =
\left\{
\begin{array}{ll}
-1 \quad \forall\, t \in [-\frac{T_0}{2};0] \\
1 \quad \forall\, t \in [0;\frac{T_0}{2}] \\
\end{array}
\right.
\end{align*}
\subsubsection{Tracer le signal $x(t)$}
\begin{center}
\begin{tikzpicture}
\draw[help lines, dashed] (-7,-2) grid (7,2);
\draw[-latex] (-7,0) -- (7,0) node[below]{$t$};
\draw[-latex] (0,-2) -- (0,2) node[left]{$x(t)$};
\foreach \i in {-6, -4, -2, 0, 2, 4, 6}{
\draw[very thick, teal]
(\i-1,1) -- (\i-1,-1)
plot[domain=\i-1:\i]({\x}, {-1})
(\i,1) -- (\i,-1)
plot[domain=\i:\i+1]({\x}, {1})
;
}
\end{tikzpicture}
\end{center}
\subsubsection{Calculer les coefficients de Fourier réels $a_0, a_n, b_n$ du signal $x(t)$}
$x$ est impaire donc $a_0 = a_n = 0$.
\begin{tabularx}{\linewidth}{XX}
{
\begin{equation*}
\text{formule~:} \quad b_n = \frac{2}{T_0} \int_{(T_0)} x(t) \sin(n\omega_0 t) \dif t
\end{equation*}
\vspace{4cm}
\begin{equation*}
x(t) = \sum_{n=1}^{+\infty} \frac{2}{n\pi}(1 - (-1)^n) \sin(n\omega_0 t)
\end{equation*}
} &
{
\begin{align*}
b_n &= \frac{4}{T_0} \int_0^{T_0/2} 1 \sin(n\omega_0 t) \dif t \\
&= \frac{4}{T_0} \left[\frac{-\cos(n\omega_0 t)}{n\omega_0}\right]_0^{T_0/2} \\
&= \frac{4}{T_0} \left(\frac{-\cos(n2\pi f_0 \frac{T_0}{2}) + 1}{n2\pi f_0}\right) \\
&= 2 \left(\frac{-\cos(n\pi) + 1}{n\pi}\right) \\
&= \frac{2}{n\pi} (-\cos(n\pi) + 1) \\
&= \frac{2}{n\pi} (-(-1)^n + 1) \\
b_n &= \boxed{\frac{2}{n\pi} (1 -(-1)^n)}
\end{align*}
} \\
\end{tabularx}
\subsubsection{Tracer la DSP du signal $x(t)$}
\begin{align*}
|c_n|^2 = |-j\frac{1}{2}b_n|^2 = \frac{1}{4}b_n^2 = \frac{1}{4}(\frac{2}{n\pi})^2(1 - (-1)^n)^2
\end{align*}
\begin{align*}
S_x(f) = \sum_{-\infty}^{+\infty} |c_n|^2 \implies
\left\{
\begin{array}{l}
\text{si } n \text{ est pair, } b_n = 0 \implies |c_n|^2 = 0 \\
\text{si } n \text{ est impair, } b_n = \frac{4}{n\pi} \implies |c_n|^2 = \frac{4}{(n\pi)^2} \\
\end{array}
\right.
\end{align*}
\subsection{Signal en dent de scie}
Soit le signal $x(t)$, $T_0$-périodique tel que~:
\begin{align*}
x(t) = A \times \frac{1}{T_0}t \quad \forall\, t \in [0;T_0] \\
\end{align*}
\subsubsection{Tracer le signal $x(t)$}
\begin{center}
\begin{tikzpicture}
\draw[help lines, dashed] (-8,-2) grid (8,2);
\draw[-latex] (-8,0) -- (8,0) node[below]{$t$};
\draw[-latex] (0,-2) -- (0,2) node[left]{$x(t)$};
\foreach \i in {-8, -6, -4, -2, 0, 2, 4, 6}{
\draw[very thick, teal]
plot[domain=\i:\i+2]({\x}, {1.7*(\x-\i)/2})
(\i+2,0) -- (\i+2,1.7)
;
}
\end{tikzpicture}
\end{center}
\subsection{Signal porte}
Soit le signal $x(t)$, de largeur $T>0$ tel que~:
\begin{align*}
x(t) = A\Pi_r(t) =
\left\{
\begin{array}{ll}
A \quad \forall\, t \in [-\frac{T}{2};\frac{T}{2}] \\
0 \text{ sinon} \\
\end{array}
\right.
\end{align*}
\subsubsection{Calculer $X(f)$, la TF de $x(t)$. Représenter la DSE de $x(t)$}
\begin{equation*}
X(f) = \int_{\mathbb{R}} x(t) e^{-j2\pi ft} \dif t
\end{equation*}
\begin{align*}
X(f) &= \int_{-T/2}^{T/2} A e^{-j2\pi ft} \dif t \\
&= A \left[\frac{e^{-j2\pi ft}}{-j2\pi f}\right]_{-T/2}^{T/2} \\
&= A \left(\frac{-e^{-j\pi fT} - e^{j\pi fT}}{-j2\pi f}\right) \\
&= A \left(\frac{e^{j\pi fT} - e^{-j\pi fT}}{-j2\pi f}\right) \\
&= A \textcolor{red}{T} \frac{\sin(\pi fT)}{\pi f \textcolor{red}{T}} \\
X(f) &= \boxed{AT \text{sinc}(fT)}
\end{align*}
\paragraph{DSE}
\begin{align*}
S_x(f) &= |X(f)|^2 \\
&= A^2T^2\text{sinc}^2(fT)
\end{align*}
\begin{align*}
\text{Rappel~: }
\left\{
\begin{array}{l}
\text{sinc}(0) = 1 \\
\text{sinc}(fT) = \frac{\sin(\pi fT)}{\pi fT} \\
\end{array}
\right.
\end{align*}
\begin{center}
\begin{tikzpicture}
%TODO plot this
\draw[help lines, dashed] (-7,-1) grid (7,5);
\draw[-latex] (-7,0) -- (7,0) node[below]{$f$};
\draw[-latex] (0,-1) -- (0,5) node[left]{$S_x(f)$};
% T = 3
\draw[very thick, teal, smooth]
plot[domain=-7:7]
(-7.0, 9.236424985855951e-66) --
(-6.9, 1.351508856906833e-07) --
(-6.8, 9.82042242286396e-07) --
(-6.7, 1.0419973375281967e-06) --
(-6.6, 1.6145054556795375e-07) --
(-6.5, 2.1247489470901966e-65) --
(-6.4, 1.825977253441778e-07) --
(-6.3, 1.3329185814786595e-06) --
(-6.2, 1.4210163081164671e-06) --
(-6.1, 2.2125643933133683e-07) --
(-6.0, 9.236424985855951e-66) --
(-5.9, 2.5281754659351027e-07) --
(-5.8, 1.8554696109297905e-06) --
(-5.7, 1.9891447935831516e-06) --
(-5.6, 3.1150365806319875e-07) --
(-5.5, 1.6166354311481645e-63) --
(-5.4, 3.602800545131002e-07) --
(-5.3, 2.661107026328134e-06) --
(-5.2, 2.8717884569168376e-06) --
(-5.1, 4.528293363652966e-07) --
(-5.0, 9.236424985855958e-66) --
(-4.9, 5.31411488307728e-07) --
(-4.8, 3.95549527961044e-06) --
(-4.7, 4.303030142791807e-06) --
(-4.6, 6.842013588090742e-07) --
(-4.5, 9.236424985855951e-66) --
(-4.4, 8.173433869377619e-07) --
(-4.3, 6.141748066122749e-06) --
(-4.2, 6.747900318735658e-06) --
(-4.1, 1.0841261802423652e-06) --
(-4.0, 9.236424985855951e-66) --
(-3.9, 1.3242099017039712e-06) --
(-3.8, 1.0070045517514694e-05) --
(-3.7, 1.1203634282331384e-05) --
(-3.6, 1.8239177759725472e-06) --
(-3.5, 9.236424985855951e-66) --
(-3.4, 2.2924485153493843e-06) --
(-3.3, 1.7705576029270517e-05) --
(-3.2, 2.0024694853027794e-05) --
(-3.1, 3.3171757645011927e-06) --
(-3.0, 9.236424985855951e-66) --
(-2.9, 4.331349886689919e-06) --
(-2.8, 3.4161245363599325e-05) --
(-2.7, 3.951033968062021e-05) --
(-2.6, 6.70381262737629e-06) --
(-2.5, 9.236424985855958e-66) --
(-2.4, 9.233583740861088e-06) --
(-2.3, 7.503337405958586e-05) --
(-2.2, 8.963447864818203e-05) --
(-2.1, 1.5752086215146527e-05) --
(-2.0, 9.236424985855951e-66) --
(-1.9, 2.3507197452505176e-05) --
(-1.8, 0.0002000210946331401) --
(-1.7, 0.00025140281402531684) --
(-1.6, 4.6745017688109035e-05) --
(-1.5, 9.236424985855951e-66) --
(-1.4, 7.974493646417963e-05) --
(-1.3, 0.0007351778449707119) --
(-1.2, 0.0010126067915802706) --
(-1.1, 0.00020923990705607045) --
(-1.0, 9.236424985855951e-66) --
(-0.9, 0.0004669229506489748) --
(-0.8, 0.005126321882375121) --
(-0.7, 0.00874527881308142) --
(-0.6, 0.002363797437660431) --
(-0.5, 9.236424985855951e-66) --
(-0.4, 0.011966724528155946) --
(-0.3, 0.2592273386445493) --
(-0.2, 1.312338401888031) --
(-0.1, 3.06348147920792) --
(0.0, 4) --
(0.1, 3.06348147920792) --
(0.2, 1.312338401888031) --
(0.3, 0.2592273386445493) --
(0.4, 0.011966724528155946) --
(0.5, 9.236424985855951e-66) --
(0.6, 0.002363797437660431) --
(0.7, 0.00874527881308142) --
(0.8, 0.005126321882375121) --
(0.9, 0.0004669229506489748) --
(1.0, 9.236424985855951e-66) --
(1.1, 0.00020923990705607045) --
(1.2, 0.0010126067915802706) --
(1.3, 0.0007351778449707119) --
(1.4, 7.974493646417963e-05) --
(1.5, 9.236424985855951e-66) --
(1.6, 4.6745017688109035e-05) --
(1.7, 0.00025140281402531684) --
(1.8, 0.0002000210946331401) --
(1.9, 2.3507197452505176e-05) --
(2.0, 9.236424985855951e-66) --
(2.1, 1.5752086215146527e-05) --
(2.2, 8.963447864818203e-05) --
(2.3, 7.503337405958586e-05) --
(2.4, 9.233583740861088e-06) --
(2.5, 9.236424985855958e-66) --
(2.6, 6.70381262737629e-06) --
(2.7, 3.951033968062021e-05) --
(2.8, 3.4161245363599325e-05) --
(2.9, 4.331349886689919e-06) --
(3.0, 9.236424985855951e-66) --
(3.1, 3.3171757645011927e-06) --
(3.2, 2.0024694853027794e-05) --
(3.3, 1.7705576029270517e-05) --
(3.4, 2.2924485153493843e-06) --
(3.5, 9.236424985855951e-66) --
(3.6, 1.8239177759725472e-06) --
(3.7, 1.1203634282331384e-05) --
(3.8, 1.0070045517514694e-05) --
(3.9, 1.3242099017039712e-06) --
(4.0, 9.236424985855951e-66) --
(4.1, 1.0841261802423652e-06) --
(4.2, 6.747900318735658e-06) --
(4.3, 6.141748066122749e-06) --
(4.4, 8.173433869377619e-07) --
(4.5, 9.236424985855951e-66) --
(4.6, 6.842013588090742e-07) --
(4.7, 4.303030142791807e-06) --
(4.8, 3.95549527961044e-06) --
(4.9, 5.31411488307728e-07) --
(5.0, 9.236424985855958e-66) --
(5.1, 4.528293363652966e-07) --
(5.2, 2.8717884569168376e-06) --
(5.3, 2.661107026328134e-06) --
(5.4, 3.602800545131002e-07) --
(5.5, 1.6166354311481645e-63) --
(5.6, 3.1150365806319875e-07) --
(5.7, 1.9891447935831516e-06) --
(5.8, 1.8554696109297905e-06) --
(5.9, 2.5281754659351027e-07) --
(6.0, 9.236424985855951e-66) --
(6.1, 2.2125643933133683e-07) --
(6.2, 1.4210163081164671e-06) --
(6.3, 1.3329185814786595e-06) --
(6.4, 1.825977253441778e-07) --
(6.5, 2.1247489470901966e-65) --
(6.6, 1.6145054556795375e-07) --
(6.7, 1.0419973375281967e-06) --
(6.8, 9.82042242286396e-07) --
(6.9, 1.351508856906833e-07) --
(7.0, 9.236424985855951e-66)
;
\end{tikzpicture}
\end{center}
\subsubsection{Que vaut $\int_{\mathbb{R}} S_x(f) \dif f$~?}
Calculer l'intégrale dans le domaine fréquentiel serait compliqué.
Mais d'après le théorême de Parseval~:
\begin{align*}
E = \int_{\mathbb{R}} S_x(f) \dif f
&= \int_{\mathbb{R}} |x(t)|^2 \dif t \\
&= \int_{-\pi/2}^{\pi/2} A^2 \dif t \\
&= A^2 [t]_{-T/2}^{T/2} \\
&= A^2 T
\end{align*}
\section{II}
\end{document}