efrei/analyse/exercices/main.tex

361 lines
12 KiB
TeX

\documentclass[a4paper,french,12pt]{article}
\title{Analyse --- Exercices}
\author{}
\date{Dernière compilation~: \today{} à \currenttime}
\usepackage{../../cours}
\usepackage{enumitem}
\usepackage{xfrac}
\begin{document}
\maketitle
\section{Équations différentielles d'ordre 1}
\paragraph{$(E_1)$}
$y' - 2y = x^2$
\begin{enumerate}[label=\alph*)]
\item Solution homogène
\begin{align*}
r = 2 \implies y_0 = \lambda e^{2x}
\end{align*}
\item Solution particulière
\begin{align*}
\left\{
\begin{array}{l}
y_1 = ax^2 + bx + c \\
y_1' = 2ax + b \\
\end{array}
\right.
\end{align*}
\begin{align*}
\text{Dans } (E_1)
&\implies
2ax + b - 2(ax^2 + bx + c) = x^2 \\
&\iff
\left\{
\begin{array}{l}
-2a = 1 \\
2a - 2b = 0 \\
b - 2c = 0 \\
\end{array}
\right.
\iff
\left\{
\begin{array}{l}
a = \sfrac{-1}{2} \\
b = \sfrac{-1}{2} \\
c = \sfrac{-1}{4} \\
\end{array}
\right.
\end{align*}
\begin{align*}
\implies y_1 = -\frac{1}{2}x^2 -\frac{1}{2}x -\frac{1}{4}
\end{align*}
\item Solution générale
\begin{equation*}
y = y_0 + y_1 = \boxed{-\frac{1}{2}x^2 -\frac{1}{2}x -\frac{1}{4} + \lambda e^{2x}}
\end{equation*}
\end{enumerate}
\paragraph{$(E_2)$}
$3y' - 9y = 7e^{3x}$
\begin{enumerate}[label=\alph*)]
\item Solution homogène
\begin{align*}
r = 3 \implies y_0 = \lambda e^{3x}
\end{align*}
\item Solution particulière
\begin{align*}
\left\{
\begin{array}{l}
y_1 = ax e^{3x} \\
y_1' = ae^{3x} + 3axe^{3x} = (3ax + a)e^{3x} \\
\end{array}
\right.
\end{align*}
\begin{align*}
\text{Dans } (E_2)
&\implies 3(3ax + a)e^{3x} - 9axe^{3x} = 7e^{3x} \\
&\iff (9ax + 3a)e^{3x} - 9axe^{3x} = 7e^{3x} \\
&\iff 9ax + 3a - 9ax = 7 \\
&\iff 3a = 7 \\
&\iff a = \frac{7}{3}
\end{align*}
\begin{align*}
\implies y_1 = \frac{7}{3}xe^{3x}
\end{align*}
\item Solution générale
\begin{equation*}
y = y_0 + y_1 = \lambda e^{3x} + \frac{7}{3}xe^{3x} = \boxed{(\frac{7}{3}x + \lambda)e^{3x}}
\end{equation*}
\end{enumerate}
\paragraph{$(E_3)$}
$2y' - 4y = 5e^{3x}$
\begin{enumerate}[label=\alph*)]
\item Solution homogène
\begin{align*}
r = 2 \implies y_0 = \lambda e^{2x}
\end{align*}
\item Solution particulière
\begin{align*}
\left\{
\begin{array}{l}
y_1 = ae^{3x} \\
y_1' = 3ae^{3x} \\
\end{array}
\right.
\end{align*}
\begin{align*}
\text{Dans } (E_3)
&\iff 6ae^{3x} - 4ae^{3x} = 5e^{3x} \\
&\iff 2a = 5
\iff a = \frac{5}{2}
\end{align*}
\begin{align*}
\implies y_1 = \frac{5}{2}e^{3x}
\end{align*}
\item Solution générale
\begin{equation*}
y = y_0 + y_1 = \boxed{\lambda e^{2x} + \frac{5}{2}e^{3x}}
\end{equation*}
\end{enumerate}
\paragraph{$(E_4)$}
$y' + 4y = 3\cos(2x)$
\begin{enumerate}[label=\alph*)]
\item Solution homogène
\begin{align*}
r = -4 \implies y_0 = \lambda e^{-4x}
\end{align*}
\item Solution particulière
\begin{align*}
\left\{
\begin{array}{l}
y_1 = a\cos(2x) + b\sin(2x) \\
y_1' = -2a\sin(2x) + 2b\cos(2x) \\
\end{array}
\right.
\end{align*}
\begin{align*}
\text{Dans } (E_4)
&\implies -2a\sin(2x) + 2b\cos(2x) + 4(a\cos(2x) + b\sin(2x)) = 3\cos(2x) \\
&\iff
\left\{
\begin{array}{l}
4a + 2b = 3 \\
4b - 2a = 0 \\
\end{array}
\right.
\iff
\left\{
\begin{array}{l}
4a + 2b = 3 \\
4a - 8b = 0 \\
\end{array}
\right.
\iff
\left\{
\begin{array}{l}
10b = 3 \\
4b - 2a = 0 \\
\end{array}
\right. \\
&\iff
\left\{
\begin{array}{l}
b = \sfrac{3}{10} \\
a = \sfrac{12}{20} = \sfrac{3}{5} \\
\end{array}
\right.
\end{align*}
\begin{align*}
\implies y_1 = \frac{3}{5}\cos(2x) + \frac{3}{10}\sin(2x)
\end{align*}
\item Solution générale
\begin{equation*}
y = y_0 + y_1 = \boxed{\lambda e^{-4x} + \frac{3}{5}\cos(2x) + \frac{3}{10}\sin(2x)}
\end{equation*}
\end{enumerate}
\section{Équations différentielles d'ordre 2}
\paragraph{$(E_5)$}
$y'' - 7y' + 10 y = (x + 3) e^{2x}$
\begin{enumerate}[label=\alph*)]
\item Solution homogène
\begin{align*}
r^2 - 7r + 10 = 0
\implies \Delta = 9
\implies
\left\{
\begin{array}{l}
r_1 = \frac{7 - 3}{2} = 2 \\\\
r_2 = \frac{7 + 3}{2} = 5 \\
\end{array}
\right.
\end{align*}
\begin{align*}
\implies
y_0 = \lambda e^{2x} + \mu e^{5x}
\end{align*}
\item Solution particulière
second membre~: $(x + 3)e^{\alpha x}$ avec $\alpha = 2$ $\implies \alpha$ racine de l'équation caractéristique.
\begin{align*}
&\left\{
\begin{array}{l}
y_1 = xe^{2x} (ax + b) \\
y_1' = (2x + 1)e^{2x}(ax + b) + axe^{2x} \\
y_1'' = (4ax + 2a + 2b)e^{2x} + (4ax^2 + 4ax + 4bx + 2b)e^{2x} \\
\end{array}
\right. \\
\implies
&\left\{
\begin{array}{l}
y_1 = xe^{2x} (ax + b) \\
y_1' = (2ax^2 + 2ax + 2bx + b)e^{2x} \\
y_1'' = (4ax^2 + 8ax + 4bx + 2a + 4b)e^{2x} \\
\end{array}
\right.
\end{align*}
Dans $(E_5)$~:
$(4ax^2 + 8ax + 4bx + 2a + 4b)e^{2x} - 7(2ax^2 + 2ax + 2bx + b)e^{2x} + 10(ax + b)xe^{2x} = (x + 3) e^{2x}$
\begin{align*}
\implies
-6ax + 2a - 3b = x + 3
\implies
\left\{
\begin{array}{l}
-6a = 1 \\
2a - 3b = 3 \\
\end{array}
\right.
\implies
\left\{
\begin{array}{l}
a = \frac{-1}{6} \\\\
b = \frac{-10}{9} \\
\end{array}
\right.
\end{align*}
\begin{align*}
\implies
y_1 = xe^{2x}(-\frac{1}{6}x - \frac{10}{9})
\end{align*}
\item Solution générale
\begin{equation*}
y = y_0 + y_1 = \boxed{\lambda e^{2x} + \mu e^{5x} + xe^{2x}(-\frac{1}{6}x - \frac{10}{9})}
\end{equation*}
\end{enumerate}
\paragraph{$(E_6)$}
$y'' - y = x^3$
\begin{enumerate}[label=\alph*)]
\item Solution homogène
\begin{align*}
r^2 - 1 = 0
\implies \Delta = 4
\implies
\left\{
\begin{array}{l}
r_1 = \frac{0 - 2}{2} = -1 \\\\
r_2 = \frac{0 + 2}{2} = 1 \\
\end{array}
\right.
\end{align*}
\begin{align*}
\implies
y_0 = \lambda e^{-x} + \mu e^{x}
\end{align*}
\item Solution particulière
second membre~: $x^3e^{\alpha x}$ avec $\alpha = 0$ $\implies \alpha$ non racine de l'équation caractéristique.
\begin{align*}
&\left\{
\begin{array}{l}
y_1 = ax^3 + bx^2 + cx + d \\
y_1' = 3ax^2 + 2bx + c \\
y_1'' = 6ax + 2b \\
\end{array}
\right.
\end{align*}
Dans $(E_6)$~:
$6ax + 2b - ax^3 - bx^2 - cx - d = x^3$
\begin{align*}
\implies
-ax^3 - bx^2 + 6ax - cx + 2b - d = x^3
\implies
\left\{
\begin{array}{l}
-a = 1 \\
-b = 0 \\
6a - c = 0 \\
2b - d = 0 \\
\end{array}
\right.
\implies
\left\{
\begin{array}{l}
a = -1 \\
b = 0 \\
c = -6 \\
d = 0 \\
\end{array}
\right.
\end{align*}
\begin{align*}
\implies
y_1 = -x^3 - 6x
\end{align*}
\item Solution générale
\begin{equation*}
y = y_0 + y_1 = \boxed{\lambda e^{-x} + \mu e^{x} - x^3 - 6x}
\end{equation*}
\end{enumerate}
\paragraph{$(E_7)$}
$y'' + y = \cos{x}$
\paragraph{$(E_8)$}
$y'' - 4y = (-4x + 3) e^{2x}$
\end{document}