\documentclass[a4paper,french,11pt]{article} \title{Théorie du signal --- Exercices --- Décomposition en Série de Fourier} \author{} \date{Dernière compilation~: \today{} à \currenttime} \usepackage{../../cours} \usepackage{enumitem} \usepackage{xfrac} \begin{document} \maketitle \section{Signal carré} Soit le signal carré $x(t)$, $T_0$-périodique tel que~: \begin{align*} x(t) = \left\{ \begin{array}{l} - 1 \,\forall\, t \in [-\frac{T_0}{2};0] \\ 1 \,\forall\, t \in [0;\frac{T_0}{2}] \\ \end{array} \right. \end{align*} \subsection{Tracer le signal $x(t)$} \subsection{Calculer les coefficients de Fourier réels $a_0, a_n, b_n$ du signal $x(t)$} $x$ est impaire donc $a_0 = a_n = 0$. \begin{align*} b_n &= \frac{2}{T_0} \int_{(T_0)} x(t) \sin(n\omega_0 t) \dif t \\ &= \frac{4}{T_0} \int_0^{T_0/2} 1 \sin(n\omega_0 t) \dif t \\ &= \frac{4}{T_0} \left[\frac{-\cos(n\omega_0 t)}{n\omega_0}\right]_0^{T_0/2} \\ &= \frac{4}{T_0} \left(\frac{-\cos(n2\pi f_0 \frac{T_0}{2}) + 1}{n2\pi f_0}\right) \\ &= 2 \left(\frac{-\cos(n\pi) + 1}{n\pi}\right) \\ &= \frac{2}{n\pi} (-\cos(n\pi) + 1) \\ &= \frac{2}{n\pi} (-(-1)^n + 1) \\ b_n &= \boxed{\frac{2}{n\pi} (1 -(-1)^n)} \\\\ x(t) = \sum_{n=1}^{+\infty} \frac{2}{n\pi}(1 - (-1)^n) \sin(2n\pi f_0 t) \end{align*} \subsection{Tracer la DSP du signal $x(t)$} \begin{align*} |c_n|^2 = |-j\frac{1}{2}b_n|^2 = \frac{1}{4}b_n^2 = \frac{1}{4}(\frac{2}{n\pi})^2(1 - (-1)^n)^2 \end{align*} \begin{align*} S_x(f) = \sum_{-\infty}^{+\infty} |c_n|^2 \implies \left\{ \begin{array}{l} \text{si } n \text{ est pair, } b_n = 0 \implies |c_n|^2 = 0 \\ \text{si } n \text{ est impair, } b_n = \frac{4}{n\pi} \implies |c_n|^2 = \frac{4}{(n\pi)^2} \\ \end{array} \right. \end{align*} \section{Signal en dent de scie} Soit le signal $x(t)$, $T_0$-périodique tel que~: \begin{align*} x(t) = A \times \frac{1}{T_0}t \,\forall\, t \in [0;T_0] \\ \end{align*} \end{document}