\documentclass[a4paper,french,12pt]{article} \title{Analyse --- Exercices} \author{} \date{Dernière compilation~: \today{} à \currenttime} \usepackage{../../cours} \usepackage{enumitem} \usepackage{xfrac} \begin{document} \maketitle \section{Équations différentielles d'ordre 1} \paragraph{$(E_1)$} $y' - 2y = x^2$ \begin{enumerate}[label=\alph*)] \item Solution homogène \begin{align*} r = 2 \implies y_0 = \lambda e^{2x} \end{align*} \item Solution particulière \begin{align*} \left\{ \begin{array}{l} y_1 = ax^2 + bx + c \\ y_1' = 2ax + b \\ \end{array} \right. \end{align*} \begin{align*} y_1' - 2 y_1 = x^2 &\Leftrightarrow 2ax + b - 2(ax^2 + bx + c) = x^2 \\ &\Leftrightarrow \left\{ \begin{array}{l} -2a = 1 \\ 2a - 2b = 0 \\ b - 2c = 0 \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = \sfrac{-1}{2} \\ b = \sfrac{-1}{2} \\ c = \sfrac{-1}{4} \\ \end{array} \right. \end{align*} \begin{align*} \implies y_1 = -\frac{1}{2}x^2 -\frac{1}{2}x -\frac{1}{4} \end{align*} \item Solution générale \begin{equation*} y = y_0 + y_1 = \boxed{-\frac{1}{2}x^2 -\frac{1}{2}x -\frac{1}{4} + \lambda e^{2x}} \end{equation*} \end{enumerate} \paragraph{$(E_2)$} $3y' - 9y = 7e^{3x}$ \begin{enumerate}[label=\alph*)] \item Solution homogène \begin{align*} r = 3 \implies y_0 = \lambda e^{3x} \end{align*} \item Solution particulière \begin{align*} \left\{ \begin{array}{l} y_1 = ax e^{3x} \\ y_1' = ae^{3x} + 3axe^{3x} = (3ax + a)e^{3x} \\ \end{array} \right. \end{align*} \begin{align*} 3y_1' - 9y_1 = 7e^{3x} &\Leftrightarrow 3(3ax + a)e^{3x} - 9axe^{3x} = 7e^{3x} \\ &\Leftrightarrow (9ax + 3a)e^{3x} - 9axe^{3x} = 7e^{3x} \\ &\Leftrightarrow 9ax + 3a - 9ax = 7 \\ &\Leftrightarrow 3a = 7 \\ &\Leftrightarrow a = \frac{7}{3} \end{align*} \begin{align*} \implies y_1 = \frac{7}{3}xe^{3x} \end{align*} \item Solution générale \begin{equation*} y = y_0 + y_1 = \lambda e^{3x} + \frac{7}{3}xe^{3x} = \boxed{(\frac{7}{3}x + \lambda)e^{3x}} \end{equation*} \end{enumerate} \paragraph{$(E_3)$} $2y' - 4y = 5e^{3x}$ \begin{enumerate}[label=\alph*)] \item Solution homogène \begin{align*} r = 2 \implies y_0 = \lambda e^{2x} \end{align*} \item Solution particulière \begin{align*} \left\{ \begin{array}{l} y_1 = ae^{3x} \\ y_1' = 3ae^{3x} \\ \end{array} \right. \end{align*} \begin{align*} 2y_1' - 4y_1 = 5e^{3x} &\Leftrightarrow 6ae^{3x} - 4ae^{3x} = 5e^{3x} \\ &\Leftrightarrow 2a = 5 \\ &\Leftrightarrow a = \frac{5}{2} \end{align*} \begin{align*} \implies y_1 = \frac{5}{2}e^{3x} \end{align*} \item Solution générale \begin{equation*} y = y_0 + y_1 = \boxed{\lambda e^{2x} + \frac{5}{2}e^{3x}} \end{equation*} \end{enumerate} \paragraph{$(E_4)$} $y' + 4y = 3\cos(2x)$ \begin{enumerate}[label=\alph*)] \item Solution homogène \begin{align*} r = -4 \implies y_0 = \lambda e^{-4x} \end{align*} \item Solution particulière \begin{align*} \left\{ \begin{array}{l} y_1 = a\cos(2x) + b\sin(2x) \\ y_1' = -2a\sin(2x) + 2b\cos(2x) \\ \end{array} \right. \end{align*} \begin{align*} y_1' + 4y_1 = 3\cos(2x) &\Leftrightarrow -2a\sin(2x) + 2b\cos(2x) + 4(a\cos(2x) + b\sin(2x)) = 3\cos(2x) \\ &\Leftrightarrow \left\{ \begin{array}{l} 4a + 2b = 3 \\ 4b - 2a = 0 \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 4a + 2b = 3 \\ 4a - 8b = 0 \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 10b = 3 \\ 4b - 2a = 0 \\ \end{array} \right. \\ &\Leftrightarrow \left\{ \begin{array}{l} b = \sfrac{3}{10} \\ a = \sfrac{12}{20} = \sfrac{3}{5} \\ \end{array} \right. \end{align*} \begin{align*} \implies y_1 = \frac{3}{5}\cos(2x) + \frac{3}{10}\sin(2x) \end{align*} \item Solution générale \begin{equation*} y = y_0 + y_1 = \boxed{\lambda e^{-4x} + \frac{3}{5}\cos(2x) + \frac{3}{10}\sin(2x)} \end{equation*} \end{enumerate} \section{Équations différentielles d'ordre 2} \paragraph{$(E_5)$} $y'' - 7y' + 10 y = (x + 3) e^{2x}$ \paragraph{$(E_6)$} $y'' - y = x^3$ \paragraph{$(E_7)$} $y'' + y = \cos{x}$ \paragraph{$(E_8)$} $y'' - 4y = (-4x + 3) e^{2x}$ \end{document}