\documentclass[a4paper,french,11pt]{article} \title{Analyse --- Exercices} \author{} \date{Dernière compilation~: \today{} à \currenttime} \usepackage{../../cours} \usepackage{enumitem} \usepackage{xfrac} \begin{document} \maketitle \section{Équations différentielles d'ordre 1} \paragraph{$(E_1)$} $y' - 2y = x^2$ \begin{enumerate}[label=\alph*)] \item Solution homogène \begin{align*} r = 2 \implies y_0 = \lambda e^{2x} \end{align*} \item Solution particulière \begin{align*} \left\{ \begin{array}{l} y_1 = ax^2 + bx + c \\ y_1' = 2ax + b \\ \end{array} \right. \end{align*} \begin{align*} \text{Dans } (E_1) &\implies 2ax + b - 2(ax^2 + bx + c) = x^2 \\ &\iff \left\{ \begin{array}{l} -2a = 1 \\ 2a - 2b = 0 \\ b - 2c = 0 \\ \end{array} \right. \iff \left\{ \begin{array}{l} a = \sfrac{-1}{2} \\ b = \sfrac{-1}{2} \\ c = \sfrac{-1}{4} \\ \end{array} \right. \end{align*} \begin{align*} \implies y_1 = -\frac{1}{2}x^2 -\frac{1}{2}x -\frac{1}{4} \end{align*} \item Solution générale \begin{equation*} y = y_0 + y_1 = \boxed{-\frac{1}{2}x^2 -\frac{1}{2}x -\frac{1}{4} + \lambda e^{2x}} \end{equation*} \end{enumerate} \paragraph{$(E_2)$} $3y' - 9y = 7e^{3x}$ \begin{enumerate}[label=\alph*)] \item Solution homogène \begin{align*} r = 3 \implies y_0 = \lambda e^{3x} \end{align*} \item Solution particulière \begin{align*} \left\{ \begin{array}{l} y_1 = ax e^{3x} \\ y_1' = ae^{3x} + 3axe^{3x} = (3ax + a)e^{3x} \\ \end{array} \right. \end{align*} \begin{align*} \text{Dans } (E_2) &\implies 3(3ax + a)e^{3x} - 9axe^{3x} = 7e^{3x} \\ &\iff (9ax + 3a)e^{3x} - 9axe^{3x} = 7e^{3x} \\ &\iff 9ax + 3a - 9ax = 7 \\ &\iff 3a = 7 \\ &\iff a = \frac{7}{3} \end{align*} \begin{align*} \implies y_1 = \frac{7}{3}xe^{3x} \end{align*} \item Solution générale \begin{equation*} y = y_0 + y_1 = \lambda e^{3x} + \frac{7}{3}xe^{3x} = \boxed{(\frac{7}{3}x + \lambda)e^{3x}} \end{equation*} \end{enumerate} \paragraph{$(E_3)$} $2y' - 4y = 5e^{3x}$ \begin{enumerate}[label=\alph*)] \item Solution homogène \begin{align*} r = 2 \implies y_0 = \lambda e^{2x} \end{align*} \item Solution particulière \begin{align*} \left\{ \begin{array}{l} y_1 = ae^{3x} \\ y_1' = 3ae^{3x} \\ \end{array} \right. \end{align*} \begin{align*} \text{Dans } (E_3) &\iff 6ae^{3x} - 4ae^{3x} = 5e^{3x} \\ &\iff 2a = 5 \iff a = \frac{5}{2} \end{align*} \begin{align*} \implies y_1 = \frac{5}{2}e^{3x} \end{align*} \item Solution générale \begin{equation*} y = y_0 + y_1 = \boxed{\lambda e^{2x} + \frac{5}{2}e^{3x}} \end{equation*} \end{enumerate} \paragraph{$(E_4)$} $y' + 4y = 3\cos(2x)$ \begin{enumerate}[label=\alph*)] \item Solution homogène \begin{align*} r = -4 \implies y_0 = \lambda e^{-4x} \end{align*} \item Solution particulière \begin{align*} \left\{ \begin{array}{l} y_1 = a\cos(2x) + b\sin(2x) \\ y_1' = -2a\sin(2x) + 2b\cos(2x) \\ \end{array} \right. \end{align*} \begin{align*} \text{Dans } (E_4) &\implies -2a\sin(2x) + 2b\cos(2x) + 4(a\cos(2x) + b\sin(2x)) = 3\cos(2x) \\ &\iff \left\{ \begin{array}{l} 4a + 2b = 3 \\ 4b - 2a = 0 \\ \end{array} \right. \iff \left\{ \begin{array}{l} 4a + 2b = 3 \\ 4a - 8b = 0 \\ \end{array} \right. \iff \left\{ \begin{array}{l} 10b = 3 \\ 4b - 2a = 0 \\ \end{array} \right. \\ &\iff \left\{ \begin{array}{l} b = \sfrac{3}{10} \\ a = \sfrac{12}{20} = \sfrac{3}{5} \\ \end{array} \right. \end{align*} \begin{align*} \implies y_1 = \frac{3}{5}\cos(2x) + \frac{3}{10}\sin(2x) \end{align*} \item Solution générale \begin{equation*} y = y_0 + y_1 = \boxed{\lambda e^{-4x} + \frac{3}{5}\cos(2x) + \frac{3}{10}\sin(2x)} \end{equation*} \end{enumerate} \section{Équations différentielles d'ordre 2} \paragraph{$(E_5)$} $y'' - 7y' + 10 y = (x + 3) e^{2x}$ \begin{enumerate}[label=\alph*)] \item Solution homogène \begin{align*} r^2 - 7r + 10 = 0 \implies \Delta = 9 \implies \left\{ \begin{array}{l} r_1 = \frac{7 - 3}{2} = 2 \\\\ r_2 = \frac{7 + 3}{2} = 5 \\ \end{array} \right. \end{align*} \begin{align*} \implies y_0 = \lambda e^{2x} + \mu e^{5x} \end{align*} \item Solution particulière second membre~: $(x + 3)e^{\alpha x}$ avec $\alpha = 2$ $\implies \alpha$ racine de l'équation caractéristique. \begin{align*} &\left\{ \begin{array}{l} y_1 = xe^{2x} (ax + b) \\ y_1' = (2x + 1)e^{2x}(ax + b) + axe^{2x} \\ y_1'' = (4ax + 2a + 2b)e^{2x} + (4ax^2 + 4ax + 4bx + 2b)e^{2x} \\ \end{array} \right. \\ \implies &\left\{ \begin{array}{l} y_1 = xe^{2x} (ax + b) \\ y_1' = (2ax^2 + 2ax + 2bx + b)e^{2x} \\ y_1'' = (4ax^2 + 8ax + 4bx + 2a + 4b)e^{2x} \\ \end{array} \right. \end{align*} Dans $(E_5)$~: $(4ax^2 + 8ax + 4bx + 2a + 4b)e^{2x} - 7(2ax^2 + 2ax + 2bx + b)e^{2x} + 10(ax + b)xe^{2x} = (x + 3) e^{2x}$ \begin{align*} \implies -6ax + 2a - 3b = x + 3 \implies \left\{ \begin{array}{l} -6a = 1 \\ 2a - 3b = 3 \\ \end{array} \right. \implies \left\{ \begin{array}{l} a = \frac{-1}{6} \\\\ b = \frac{-10}{9} \\ \end{array} \right. \end{align*} \begin{align*} \implies y_1 = xe^{2x}(-\frac{1}{6}x - \frac{10}{9}) \end{align*} \item Solution générale \begin{equation*} y = y_0 + y_1 = \boxed{\lambda e^{2x} + \mu e^{5x} + xe^{2x}(-\frac{1}{6}x - \frac{10}{9})} \end{equation*} \end{enumerate} \paragraph{$(E_6)$} $y'' - y = x^3$ \begin{enumerate}[label=\alph*)] \item Solution homogène \begin{align*} r^2 - 1 = 0 \implies \Delta = 4 \implies \left\{ \begin{array}{l} r_1 = \frac{0 - 2}{2} = -1 \\\\ r_2 = \frac{0 + 2}{2} = 1 \\ \end{array} \right. \end{align*} \begin{align*} \implies y_0 = \lambda e^{-x} + \mu e^{x} \end{align*} \item Solution particulière second membre~: $x^3e^{\alpha x}$ avec $\alpha = 0$ $\implies \alpha$ non racine de l'équation caractéristique. \begin{align*} &\left\{ \begin{array}{l} y_1 = ax^3 + bx^2 + cx + d \\ y_1' = 3ax^2 + 2bx + c \\ y_1'' = 6ax + 2b \\ \end{array} \right. \end{align*} Dans $(E_6)$~: $6ax + 2b - ax^3 - bx^2 - cx - d = x^3$ \begin{align*} \implies -ax^3 - bx^2 + 6ax - cx + 2b - d = x^3 \implies \left\{ \begin{array}{l} -a = 1 \\ -b = 0 \\ 6a - c = 0 \\ 2b - d = 0 \\ \end{array} \right. \implies \left\{ \begin{array}{l} a = -1 \\ b = 0 \\ c = -6 \\ d = 0 \\ \end{array} \right. \end{align*} \begin{align*} \implies y_1 = -x^3 - 6x \end{align*} \item Solution générale \begin{equation*} y = y_0 + y_1 = \boxed{\lambda e^{-x} + \mu e^{x} - x^3 - 6x} \end{equation*} \end{enumerate} \paragraph{$(E_7)$} $y'' + y = \cos{x}$ \begin{enumerate}[label=\alph*)] \item Solution homogène \begin{align*} r^2 + 1 = 0 \implies \Delta = -4 \implies \left\{ \begin{array}{l} r_1 = \frac{0 - 2i}{2} \\\\ r_2 = \frac{0 + 2i}{2} \\ \end{array} \right. \implies \left\{ \begin{array}{l} \alpha = 0 \\ \beta = 1 \end{array} \right. \end{align*} \begin{align*} \implies y_0 = e^{0}(\lambda \cos{x} + \mu \sin{x}) = \lambda \cos{x} + \mu \sin{x} \end{align*} \item Solution particulière second membre~: $e^{\alpha x}(P_0(x)\cos{\beta x} + 0 \times \sin{\beta x})$ avec $\alpha = 0, \beta = 1, P_0 = 1$ $\implies \alpha + i\beta$ racine de l'équation caractéristique. \begin{align*} y_1 &= xe^{\alpha x}(a\cos{\beta x} + b\sin{\beta x}) \\ &= x(a\cos{x} + b\sin{x}) \\ \implies &\left\{ \begin{array}{l} y_1 = x(a\cos{x} + b\sin{x}) \\ y_1' = a\cos{x} + b\sin{x} - x(a\sin{x} - b\cos{x}) \\ y_1'' = -a\sin{x} + b\cos{x} - a\sin{x} + b\cos{x} - x(a\cos{x} + b\sin{x}) \\ \end{array} \right. \\ \implies &\left\{ \begin{array}{l} y_1 = x(a\cos{x} + b\sin{x}) \\ y_1' = a\cos{x} + b\sin{x} - x(a\sin{x} - b\cos{x}) \\ y_1'' = -2a\sin{x} + 2b\cos{x} - x(a\cos{x} + b\sin{x}) \\ \end{array} \right. \end{align*} Dans $(E_7)$~: \begin{align*} -2a\sin{x} + 2b\cos{x} - x(a\cos{x} + b\sin{x}) + x(a\cos{x} + b\sin{x}) = \cos{x} \\ \iff -2a\sin{x} + 2b\cos{x} = \cos{x} \\ \iff 2b\cos{x} - 2a\sin{x} = \cos{x} \\ \implies \left\{ \begin{array}{l} 2b = 1 \\ -a = 0 \\ \end{array} \right. \implies \left\{ \begin{array}{l} a = 0 \\ b = \frac{1}{2} \\ \end{array} \right. \end{align*} \begin{align*} \implies y_1 = \frac{x\sin{x}}{2} \\ \end{align*} \item Solution générale \begin{equation*} y = y_0 + y_1 = \boxed{\lambda \cos{x} + \mu \sin{x} + \frac{x\sin{x}}{2}} \end{equation*} \end{enumerate} \paragraph{$(E_8)$} $y'' - 4y = (-4x + 3) e^{2x}$ \begin{enumerate}[label=\alph*)] \item Solution homogène \begin{align*} r^2 - 4 = 0 \implies \Delta = 16 \implies \left\{ \begin{array}{l} r_1 = \frac{0 - 4}{2} = -2 \\\\ r_2 = \frac{0 + 4}{2} = 2 \\ \end{array} \right. \end{align*} \begin{align*} \implies y_0 = \lambda e^{-2x} + \mu e^{2x} \end{align*} \item Solution particulière second membre~: $(-4x + 3)e^{\alpha x}$ avec $\alpha = 2$ $\implies \alpha$ racine de l'équation caractéristique. \begin{align*} &\left\{ \begin{array}{l} y_1 = xe^{2x} (ax + b) \\ y_1' = (2x + 1)e^{2x}(ax + b) + axe^{2x} \\ y_1'' = (4ax + 2a + 2b)e^{2x} + (4ax^2 + 4ax + 4bx + 2b)e^{2x} \\ \end{array} \right. \\ \implies &\left\{ \begin{array}{l} y_1 = xe^{2x} (ax + b) \\ y_1' = (2ax^2 + 2ax + 2bx + b)e^{2x} \\ y_1'' = (4ax^2 + 8ax + 4bx + 2a + 4b)e^{2x} \\ \end{array} \right. \end{align*} Dans $(E_8)$~: $(4ax^2 + 8ax + 4bx + 2a + 4b)e^{2x} - 4x(ax + b)e^{2x} = (-4x + 3) e^{2x}$ \begin{align*} \implies 8ax + 2a + 4b = -4x + 3 \implies \left\{ \begin{array}{l} 8a = -4 \\ 2a + 4b = 3 \\ \end{array} \right. \implies \left\{ \begin{array}{l} a = \frac{-1}{2} \\ b = 1 \\ \end{array} \right. \end{align*} \begin{align*} \implies y_1 = xe^{2x} (\frac{-x}{2} + 1) \end{align*} \item Solution générale \begin{equation*} y = y_0 + y_1 = \boxed{\lambda e^{-2x} + \mu e^{2x} + xe^{2x} (\frac{-x}{2} + 1)} \end{equation*} \end{enumerate} \section{Intégrales généralisées} \subsection{Exercice 1} Étudier la convergence des intégrales généralisées suivantes. \paragraph{$(I_1)$} $\int_1^{+\infty} \frac{2x + x^3}{x^3 + x^4} \dif x$ \begin{align*} \forall x \in [1; +\infty[\quad \frac{2x + x^3}{x^3 + x^4} \geq 0 \\\\ \frac{2x + x^3}{x^3 + x^4} = \frac{x^3(\frac{2}{x^2} + 1)}{x^4(\frac{1}{x} + 1)} \sim \frac{x^3}{x^4} \sim \frac{1}{x} \\ \text{Or } \int_1^{+\infty}\frac{1}{x}\dif x \text{ diverge donc $I_1$ diverge par équivalence.} \\ \end{align*} \paragraph{$(I_2)$} $\int_0^{+\infty} \frac{x\sqrt{x}}{x^2 \sqrt[3]{x} + 4} \dif x$ \begin{align*} \forall x \in [0; +\infty[\quad \frac{x\sqrt{x}}{x^2 \sqrt[3]{x} + 4} \geq 0 \\\\ \frac{x\sqrt{x}}{x^2 \sqrt[3]{x} + 4} = \frac{x^{1+\frac{1}{2}}}{x^{2+\frac{1}{3}}(1 + \frac{4}{x^{\frac{7}{3}}})} \sim \frac{x^{1+\frac{1}{2}}}{x^{\frac{7}{3}}} \sim x^{\frac{3}{2} - \frac{7}{3}} \sim x^{-\frac{5}{6}} \sim \frac{1}{x^{\frac{5}{6}}} \\ \text{Or } \int_1^{+\infty}\frac{1}{x^{\frac{5}{6}}}\dif x \text{ diverge donc $I_2$ diverge par équivalence.} \\ \end{align*} \paragraph{$(I_3)$} $\int_1^{+\infty} \frac{5x + x^2}{x^3 + x^3\sqrt{x}} \dif x$ \begin{align*} \forall x \in [1; +\infty[\quad \frac{5x + x^2}{x^3 + x^3\sqrt{x}} \geq 0 \\\\ \frac{5x + x^2}{x^3 + x^3\sqrt{x}} = \frac{x^2(\frac{5x}{x^2} + 1)}{x^3\sqrt{x}(\frac{1}{\sqrt{x}} + 1)} = \frac{x^2(\frac{5}{x} + 1)}{x^{3 + \frac{1}{2}}(\frac{1}{\sqrt{x}} + 1)} \sim \frac{x^2}{x^{\frac{7}{2}}} \sim \frac{1}{x^{\frac{3}{2}}} \\ \text{Or } \int_1^{+\infty}\frac{1}{x^{\frac{3}{2}}}\dif x \text{ converge donc $I_3$ converge par équivalence.} \\ \end{align*} \paragraph{$(I_4)$} $\int_0^{+\infty} \frac{x \sqrt[3]{x}}{x^2\sqrt{x} + 5} e^{-x} \dif x$ \begin{align*} \forall x \in [0; +\infty[ \quad \frac{x \sqrt[3]{x}}{x^2\sqrt{x} + 5} e^{-x} \geq 0 \\\\ \frac{x \sqrt[3]{x}}{x^2\sqrt{x} + 5} e^{-x} = \frac{x^{\frac{4}{3}}}{x^2\sqrt{x}(1 + \frac{5}{x^2\sqrt{x}})} e^{-x} \sim \frac{x^{\frac{4}{3}}}{x^{\frac{5}{2}}} e^{-x} \sim x^{\frac{-7}{6}} e^{-x} \sim \frac{1}{x^{\frac{7}{6}}} e^{-x} \\ \text{Or } \int_0^{+\infty}\frac{1}{x^{\frac{7}{6}}} e^{-x}\dif x \text{ converge (l'exponentielle l'emporte) donc $I_4$ converge par équivalence.} \\ (\sim e^{-kx} \text{ avec } k = 1 > 0) \end{align*} \subsection{Exercice 2} Étudier la convergence absolue de l'intégrale généralisée suivante. \paragraph{$(I_5)$} $\int_1^{+\infty} \frac{\sin x}{x^2} \dif x$ $(I_5)$ n'est pas strictement positif sur $[1;+\infty[$. Nous allons donc étudier sa valeur absolue. \begin{align*} -1 \leq \sin{x} \leq 1 \\ 0 \leq |\sin{x}| \leq 1 \\ 0 \leq \left|\frac{\sin{x}}{x^2}\right| \leq \frac{1}{x^2} \\ \text{Or } \int_1^{+\infty}\frac{1}{x^2}\dif x \text{ converge donc } \left|\frac{\sin{x}}{x^2}\right| \text{ converge par majoration.} \\ \implies I_5 \text{ converge absolument.} \\ \end{align*} \section{Séries de Fourier} \subsection{Exercice 1} \begin{enumerate} \item Déterminer le développement en série de Fourier de la fonction $f$, 2-périodique, définie par~: \\ $f(x) = |x| \quad \forall x \in [-1;1[$ $f(-x) = |-x| = |x| = f(x)$ \\ donc $f$ est paire $\implies b_n = 0$ \begin{multicols}{2} \begin{align*} a_0 &= \frac{1}{2} \int_{-1}^1 |x| \dif x \\ &= \int_{0}^1 x \dif x \\ &= \left[\frac{x^2}{2}\right]_0^1 \\ a_0 &= \frac{1}{2} \end{align*} \begin{align*} a_n &= \frac{2}{2} \int_{-1}^1 |x| \cos(n\pi x) \dif x \\ &= 2\int_0^1 x \cos(n\pi x) \dif x \\ \text{IPP } &\left\{ \begin{array}{ll} u = x & u' = 1 \\ v' = \cos(n\pi x) & v = \frac{\sin{n\pi x}}{n\pi} \\ \end{array} \right. \\ a_n &= 2 \left(\left[x\frac{\sin{n\pi x}}{n\pi}\right]_0^1 - \int_0^1 \frac{\sin{n\pi x}}{n\pi} \dif x \right) \\ &= 2 \left(\frac{\sin{n\pi}}{n\pi} - 0 + \left[\frac{\cos{n\pi x}}{(n\pi)^2}\right]_0^1 \right) \\ &= 2 \left(0 + \frac{\cos{n\pi}}{(n\pi)^2} - \frac{\cos{0}}{(n\pi)^2}\right) \\ a_n &= \frac{2(-1)^n - 2}{(n\pi)^2} \end{align*} \end{multicols} \begin{equation*} \implies f(x) = \frac{1}{2} + \sum_{n=1}^{+\infty} \frac{2(-1)^n - 2}{(n\pi)^2} \cos(nx) \end{equation*} \item En déduire que \quad $\frac{\pi^2}{8} = \sum_{n=0}^{+\infty} \frac{1}{(2n + 1)^2}$ Posons $x = 0$~: \begin{align*} f(0) &= \frac{1}{2} + \sum_{n=1}^{+\infty} \frac{2(-1)^n - 2}{(n\pi)^2} \cos{0} \\ \iff 0 &= \frac{1}{2} + \sum_{n=1}^{+\infty} \frac{2(-1)^n - 2}{(n\pi)^2} \\ \iff -\frac{1}{2} &= 2 \sum_{n=1}^{+\infty} \frac{(-1)^n - 1}{(n\pi)^2} \\ \iff -\frac{1}{4} &= \sum_{n=1}^{+\infty} \frac{(-1)^n - 1}{(n\pi)^2} \\ \iff \frac{1}{4} &= \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} + 1}{(n\pi)^2} \\ \iff \frac{\pi^2}{4} &= \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} + 1}{(n\pi)^2} \pi^2 \\ \iff \frac{\pi^2}{8} &= \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} + 1}{2n^2} \\ \end{align*} \item Appliquer l'identité de Parseval-Bessel. En déduire la valeur de la somme \quad $\sum_{n=0}^{+\infty}\frac{1}{(2n + 1)^4}$ \begin{align*} a_0^2 + \frac{1}{2}\sum_{n=1}^{+\infty}a_n^2 = \frac{1}{2}\int_{-1}^{1}|x|^2 \dif x \\ \iff \frac{1}{4} + \frac{1}{2}\sum_{n=1}^{+\infty} 4\frac{(-1)^n - 1}{(n\pi)^4} = \int_0^{1}x^2 \dif x \\ \iff \frac{1}{4} + \frac{1}{2}\sum_{n=1}^{+\infty} 4\frac{(-1)^n - 1}{(n\pi)^4} = \left[\frac{x^3}{3}\right]_0^1 \\ \iff \frac{1}{4} + \frac{1}{2}\sum_{n=1}^{+\infty} 4\frac{(-1)^n - 1}{(n\pi)^4} = \frac{1}{3} \\ \iff \frac{4}{2} \sum_{n=1}^{+\infty} \frac{(-1)^n - 1}{(n\pi)^4} = \frac{1}{3} - \frac{1}{4} \\ \iff \sum_{n=1}^{+\infty} \frac{(-1)^n - 1}{(n\pi)^4} = \frac{1}{24} \\ \iff \sum_{n=1}^{+\infty} \frac{(-1)^n - 1}{n^4} = \frac{\pi^4}{24} \\ \end{align*} \end{enumerate} \end{document}