Continue com num

This commit is contained in:
flyingscorpio@arch-desktop 2022-05-07 00:37:23 +02:00
parent 5477ae489e
commit db524d1c3b

View file

@ -1591,6 +1591,214 @@
Le coefficient $\alpha$, dit \emph{d'arrondi}, est appelé \emph{roll-off filter}.
$\alpha=0$ donne le filtre passe-bas idéal, de fréquence de coupure $\frac{1}{2T}$. \\
$\alpha=1$ donne un filtre en cosinus surélevé. \\
En pratique, on va prendre $0.3 \leq \alpha \leq 0.7$, mais pour toute valeur de $\alpha$, il n'y aura pas d'IIS\@.
\section{Transmission sur onde porteuse~: les modulations numériques}
La modulation numérique a deux intérêts~:
\begin{enumerate}
\item \textbf{Adapter le signal au canal de transmission} ---
Cela consiste à moduler une porteuse $p(t)$ par le signal d'information $x(t)$ et à transmettre le signal modulé $e(t)$ sur le canal de transmission.
À la réception, on fait le contraire (démodulation)~: à partir du signal $r(t)$ on obtient $x(t)_e$, idéalement égal à $e(t)$.
\item \textbf{Multiplexer plusieurs signaux sur un même canal de transmission} ---
Si l'on additionne les différents signaux à transmettre, impossible de les différencier à l'arrivée.
Par contre, on peut moduler les porteuses de fréquences différentes afin de dissocier les spectres.
\hfill
\begin{tikzpicture}[scale=2]
\draw (-1,0) -- (1,0);
\foreach \i in {-1,-0.5,...,1}{
\draw (\i,0) -- (\i,0.04);
\node at (\i,-0.2) {\tiny \i};
}
\draw[blue,very thick] (0,0) -- (0,1);
\end{tikzpicture}
\hfill
\begin{tikzpicture}[scale=2]
\draw (-1,0) -- (1,0);
\foreach \i in {-1,-0.5,...,1}{
\draw (\i,0) -- (\i,0.04);
\node at (\i,-0.2) {\tiny \i};
}
\draw[red,very thick] (0,0) -- (0,1);
\end{tikzpicture}
\hfill
\begin{tikzpicture}[scale=2]
\draw (-1,0) -- (1,0);
\foreach \i in {-1,-0.5,...,1}{
\draw (\i,0) -- (\i,0.04);
\node at (\i,-0.2) {\tiny \i};
}
\draw[green,very thick] (0,0) -- (0,1);
\end{tikzpicture}
\hfill{}
\begin{center}
\begin{tikzpicture}[scale=2]
\draw [thick,decorate, decoration={brace,amplitude=10pt}] (3.5,1.4) -- (-3.5,1.4);
\draw (-1,0) -- (1,0);
\foreach \i in {-1,-0.5,...,1}{
\draw (\i,0) -- (\i,0.04);
\node at (\i,-0.2) {\tiny \i};
}
\draw[blue,very thick] (-0.25,0) -- (-0.25,1);
\draw[blue,very thick] (0.25,0) -- (0.25,1);
\draw[red,very thick] (-0.5,0) -- (-0.5,1);
\draw[red,very thick] (0.5,0) -- (0.5,1);
\draw[green,very thick] (-0.75,0) -- (-0.75,1);
\draw[green,very thick] (0.75,0) -- (0.75,1);
\end{tikzpicture}
\end{center}
\end{enumerate}
\subsection{Principe de la modulation}
Soit $m(t)$ le signal d'information à transmettre.
Soit la porteuse $p(t) = A \cos(2\pi ft + \varphi)$.
Moduler, c'est changer une ou deux caractéristiques de la porteuse suivant $m(t)$~:
\begin{itemize}
\item $A$~: modulation d'amplitude
\item $f$~: modulation de fréquence
\item $\varphi$~: modulation de phase
\item $A$ et $\varphi$~: modulation de phase et d'amplitude
\end{itemize}
\subsection{Modulation d'amplitude (ASK, Amplitude Shift Keying)}
On choisit deux amplitudes différentes pour les 0 et les 1 dans le cas d'un signal bivalent.
Sinon, le OOF (On/Off Keying), c'est quand 0 = aucun signal et 1 = la porteuse.
\begin{center}
\begin{tikzpicture}[scale=1]
\draw (0,0) -- (11,0);
\foreach \i in {0,1,...,11}{
\draw[dashed,black!60] (\i,-1.3) -- (\i,1.5);
}
\foreach \i in {0,3,5}{
\node at (\i+0.5,1.5) {\small 00};
}
\foreach \i in {1,8}{
\node at (\i+0.5,1.5) {\small 11};
}
\foreach \i in {2,4,9,10}{
\node at (\i+0.5,1.5) {\small 01};
}
\foreach \i in {6,7}{
\node at (\i+0.5,1.5) {\small 10};
}
\draw[red,thick]
(0,0) sin (0.125,-0.25) cos (0.25,0) sin (0.375,0.25) cos (0.5,0)
sin (0.625,-0.25) cos (0.75,0) sin (0.875,0.25) cos (1,0)
sin (1.125,-1) cos (1.25,0) sin (1.375,1) cos (1.5,0)
sin (1.625,-1) cos (1.75,0) sin (1.875,1) cos (2,0)
sin (2.125,-0.5) cos (2.25,0) sin (2.375,0.5) cos (2.5,0)
sin (2.625,-0.5) cos (2.75,0) sin (2.875,0.5) cos (3,0)
sin (3.125,-0.25) cos (3.25,0) sin (3.375,0.25) cos (3.5,0)
sin (3.625,-0.25) cos (3.75,0) sin (3.875,0.25) cos (4,0)
sin (4.125,-0.5) cos (4.25,0) sin (4.375,0.5) cos (4.5,0)
sin (4.625,-0.5) cos (4.75,0) sin (4.875,0.5) cos (5,0)
sin (5.125,-0.25) cos (5.25,0) sin (5.375,0.25) cos (5.5,0)
sin (5.625,-0.25) cos (5.75,0) sin (5.875,0.25) cos (6,0)
sin (6.125,-0.75) cos (6.25,0) sin (6.375,0.75) cos (6.5,0)
sin (6.625,-0.75) cos (6.75,0) sin (6.875,0.75) cos (7,0)
sin (7.125,-0.75) cos (7.25,0) sin (7.375,0.75) cos (7.5,0)
sin (7.625,-0.75) cos (7.75,0) sin (7.875,0.75) cos (8,0)
sin (8.125,-1) cos (8.25,0) sin (8.375,1) cos (8.5,0)
sin (8.625,-1) cos (8.75,0) sin (8.875,1) cos (9,0)
sin (9.125,-0.5) cos (9.25,0) sin (9.375,0.5) cos (9.5,0)
sin (9.625,-0.5) cos (9.75,0) sin (9.875,0.5) cos (10,0)
sin (10.125,-0.5) cos (10.25,0) sin (10.375,0.5) cos (10.5,0)
sin (10.625,-0.5) cos (10.75,0) sin (10.875,0.5) cos (11,0)
;
\end{tikzpicture}
\end{center}
\subsection{Modulation de fréquence (FSK, Frequency Shift Keying)}
On attribue des fréquences de porteuses différentes en fonction de la valeur à coder.
\begin{center}
\begin{tikzpicture}[scale=1]
\draw (0,0) -- (11,0);
\foreach \i in {0,1,...,11}{
\draw[dashed,black!60] (\i,-1.3) -- (\i,1.5);
}
\foreach \i in {0,1,4,6,7,8,10}{
\node at (\i+0.5,1.5) {\small 0};
}
\foreach \i in {2,3,5,9}{
\node at (\i+0.5,1.5) {\small 1};
}
\draw[red,thick]
(0,1) cos (0.25,0) sin (0.5,-1) cos (0.75,0) sin (1,1)
cos (1.25,0) sin (1.5,-1) cos (1.75,0) sin (2,1)
cos (2.125,0) sin (2.25,-1) cos (2.375,0) sin (2.5,1)
cos (2.625,0) sin (2.75,-1) cos (2.875,0) sin (3,1)
cos (3.125,0) sin (3.25,-1) cos (3.375,0) sin (3.5,1)
cos (3.625,0) sin (3.75,-1) cos (3.875,0) sin (4,1)
cos (4.25,0) sin (4.5,-1) cos (4.75,0) sin (5,1)
cos (5.125,0) sin (5.25,-1) cos (5.375,0) sin (5.5,1)
cos (5.625,0) sin (5.75,-1) cos (5.875,0) sin (6,1)
cos (6.25,0) sin (6.5,-1) cos (6.75,0) sin (7,1)
cos (7.25,0) sin (7.5,-1) cos (7.75,0) sin (8,1)
cos (8.25,0) sin (8.5,-1) cos (8.75,0) sin (9,1)
cos (9.125,0) sin (9.25,-1) cos (9.375,0) sin (9.5,1)
cos (9.625,0) sin (9.75,-1) cos (9.875,0) sin (10,1)
cos (10.25,0) sin (10.5,-1) cos (10.75,0) sin (11,1)
;
\end{tikzpicture}
\end{center}
\subsection{Modulation de phase (PSK, Phase Shift Keying)}
On applique un déphasage pour différencier les séquences binaires par rapport à la phase de la porteuse, qui sert de référence.
\begin{center}
\begin{tikzpicture}[scale=1]
\draw (0,0) -- (11,0);
\foreach \i in {0,1,...,11}{
\draw[dashed,black!60] (\i,-1.3) -- (\i,1.5);
}
\foreach \i in {0,1,4,6,7,8,10}{
\node at (\i+0.5,1.5) {\small 0};
}
\foreach \i in {2,3,5,9}{
\node at (\i+0.5,1.5) {\small 1};
}
\draw[red,thick]
(0,0) sin (0.125,-1) cos (0.25,0) sin (0.375,1) cos (0.5,0)
sin (0.625,-1) cos (0.75,0) sin (0.875,1) cos (1,0)
sin (1.125,-1) cos (1.25,0) sin (1.375,1) cos (1.5,0)
sin (1.625,-1) cos (1.75,0) sin (1.875,1) cos (2,0)
sin (2.125,1) cos (2.25,0) sin (2.375,-1) cos (2.5,0)
sin (2.625,1) cos (2.75,0) sin (2.875,-1) cos (3,0)
sin (3.125,1) cos (3.25,0) sin (3.375,-1) cos (3.5,0)
sin (3.625,1) cos (3.75,0) sin (3.875,-1) cos (4,0)
sin (4.125,-1) cos (4.25,0) sin (4.375,1) cos (4.5,0)
sin (4.625,-1) cos (4.75,0) sin (4.875,1) cos (5,0)
sin (5.125,1) cos (5.25,0) sin (5.375,-1) cos (5.5,0)
sin (5.625,1) cos (5.75,0) sin (5.875,-1) cos (6,0)
sin (6.125,-1) cos (6.25,0) sin (6.375,1) cos (6.5,0)
sin (6.625,-1) cos (6.75,0) sin (6.875,1) cos (7,0)
sin (7.125,-1) cos (7.25,0) sin (7.375,1) cos (7.5,0)
sin (7.625,-1) cos (7.75,0) sin (7.875,1) cos (8,0)
sin (8.125,-1) cos (8.25,0) sin (8.375,1) cos (8.5,0)
sin (8.625,-1) cos (8.75,0) sin (8.875,1) cos (9,0)
sin (9.125,1) cos (9.25,0) sin (9.375,-1) cos (9.5,0)
sin (9.625,1) cos (9.75,0) sin (9.875,-1) cos (10,0)
sin (10.125,-1) cos (10.25,0) sin (10.375,1) cos (10.5,0)
sin (10.625,-1) cos (10.75,0) sin (10.875,1) cos (11,0)
;
\end{tikzpicture}
\end{center}
Représentation trigonométrique~: \emph{constellation}.
\end{document}