Write ex3 theorie du signal
This commit is contained in:
parent
043188d9d1
commit
d5db02dbf8
1 changed files with 61 additions and 0 deletions
|
@ -119,4 +119,65 @@ Théorie du signal --- TD1
|
|||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\section{Signal porte}
|
||||
|
||||
Soit le signal $x(t)$, de largeur $T>0$ tel que~:
|
||||
\begin{align*}
|
||||
x(t) = A\Pi_r(t) =
|
||||
\left\{
|
||||
\begin{array}{ll}
|
||||
A \quad \forall\, t \in [-\frac{T}{2};\frac{T}{2}] \\
|
||||
0 \text{ sinon} \\
|
||||
\end{array}
|
||||
\right.
|
||||
\end{align*}
|
||||
|
||||
\subsection{Calculer $X(f)$, la TF de $x(t)$. Représenter la DSE de $x(t)$}
|
||||
\begin{equation*}
|
||||
X(f) = \int_{\mathbb{R}} x(t) e^{-j2\pi ft} \dif t
|
||||
\end{equation*}
|
||||
\begin{align*}
|
||||
X(f) &= \int_{-T/2}^{T/2} A e^{-j2\pi ft} \dif t \\
|
||||
&= A \left[\frac{e^{-j2\pi ft}}{-j2\pi f}\right]_{-T/2}^{T/2} \\
|
||||
&= A \left(\frac{-e^{-j\pi fT} - e^{j\pi fT}}{-j2\pi f}\right) \\
|
||||
&= A \left(\frac{e^{j\pi fT} - e^{-j\pi fT}}{-j2\pi f}\right) \\
|
||||
&= A \frac{\sin(\pi fT)}{\pi f \color{red}{T}}\color{red}{T} \\
|
||||
X(f) &= \boxed{AT \text{sinc}(fT)}
|
||||
\end{align*}
|
||||
|
||||
\paragraph{DSE}
|
||||
|
||||
\begin{align*}
|
||||
S_x(f) &= |X(f)|^2 \\
|
||||
&= A^2T^2\text{sinc}^2(fT)
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
\text{Rappel~: } &\text{sinc}(0) = 1 \\
|
||||
&\text{sinc}(fT) = \frac{\sin(\pi fT)}{\pi fT}
|
||||
\end{align*}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
%TODO plot this
|
||||
\draw[help lines, dashed] (-7,-2) grid (7,2);
|
||||
\draw[-latex] (-7,0) -- (7,0) node[below]{$t$};
|
||||
\draw[-latex] (0,-2) -- (0,2) node[left]{$x(t)$};
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\subsection{Que vaut $\int_{\mathbb{R}} S_x(f) \dif f$~?}
|
||||
|
||||
Calculer l'intégrale dans le domaine fréquentiel serait compliqué.
|
||||
Mais d'après le théorême de Parseval~:
|
||||
|
||||
\begin{align*}
|
||||
E = \int_{\mathbb{R}} S_x(f) \dif f
|
||||
&= \int_{\mathbb{R}} |x(t)|^2 \dif t \\
|
||||
&= \int_{-\pi/2}^{\pi/2} A^2 \dif t \\
|
||||
&= A^2 [t]_{-T/2}^{T/2} \\
|
||||
&= A^2 T
|
||||
\end{align*}
|
||||
|
||||
\end{document}
|
||||
|
|
Loading…
Reference in a new issue