Work on td1
This commit is contained in:
parent
8d6eb6fb24
commit
d57830f883
1 changed files with 50 additions and 15 deletions
|
@ -1,12 +1,17 @@
|
|||
\documentclass[a4paper,french,11pt]{article}
|
||||
|
||||
\title{Théorie du signal --- TD1 \\ Décomposition en Série de Fourier}
|
||||
\title{
|
||||
Théorie du signal --- TD1
|
||||
\\
|
||||
\large Décomposition en Série de Fourier
|
||||
}
|
||||
\author{}
|
||||
\date{Dernière compilation~: \today{} à \currenttime}
|
||||
|
||||
\usepackage{../../cours}
|
||||
\usepackage{enumitem}
|
||||
\usepackage{xfrac}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
@ -18,29 +23,59 @@
|
|||
\begin{align*}
|
||||
x(t) =
|
||||
\left\{
|
||||
\begin{array}{l}
|
||||
- 1 \,\forall\, t \in [-\frac{T_0}{2};0] \\
|
||||
1 \,\forall\, t \in [0;\frac{T_0}{2}] \\
|
||||
\begin{array}{ll}
|
||||
-1 \quad \forall\, t \in [-\frac{T_0}{2};0] \\
|
||||
1 \quad \forall\, t \in [0;\frac{T_0}{2}] \\
|
||||
\end{array}
|
||||
\right.
|
||||
\end{align*}
|
||||
|
||||
\subsection{Tracer le signal $x(t)$}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
|
||||
\draw[help lines, dashed] (-7,-2) grid (7,2);
|
||||
\draw[-latex] (-7,0) -- (7,0) node[below]{$t$};
|
||||
\draw[-latex] (0,-2) -- (0,2) node[left]{$x(t)$};
|
||||
|
||||
\foreach \i in {-6, -4, -2, 0, 2, 4, 6}{
|
||||
\draw[very thick, teal]
|
||||
plot[domain=\i-1:\i]({\x}, {-1})
|
||||
plot[domain=\i:\i+1]({\x}, {1})
|
||||
;
|
||||
}
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\subsection{Calculer les coefficients de Fourier réels $a_0, a_n, b_n$ du signal $x(t)$}
|
||||
|
||||
$x$ est impaire donc $a_0 = a_n = 0$.
|
||||
\begin{align*}
|
||||
b_n &= \frac{2}{T_0} \int_{(T_0)} x(t) \sin(n\omega_0 t) \dif t \\
|
||||
&= \frac{4}{T_0} \int_0^{T_0/2} 1 \sin(n\omega_0 t) \dif t \\
|
||||
&= \frac{4}{T_0} \left[\frac{-\cos(n\omega_0 t)}{n\omega_0}\right]_0^{T_0/2} \\
|
||||
&= \frac{4}{T_0} \left(\frac{-\cos(n2\pi f_0 \frac{T_0}{2}) + 1}{n2\pi f_0}\right) \\
|
||||
&= 2 \left(\frac{-\cos(n\pi) + 1}{n\pi}\right) \\
|
||||
&= \frac{2}{n\pi} (-\cos(n\pi) + 1) \\
|
||||
&= \frac{2}{n\pi} (-(-1)^n + 1) \\
|
||||
b_n &= \boxed{\frac{2}{n\pi} (1 -(-1)^n)} \\\\
|
||||
x(t) = \sum_{n=1}^{+\infty} \frac{2}{n\pi}(1 - (-1)^n) \sin(2n\pi f_0 t)
|
||||
\end{align*}
|
||||
|
||||
\begin{tabularx}{\linewidth}{XX}
|
||||
{
|
||||
\begin{equation*}
|
||||
\text{formule~:} \quad b_n = \frac{2}{T_0} \int_{(T_0)} x(t) \sin(n\omega_0 t) \dif t
|
||||
\end{equation*}
|
||||
\vspace{4cm}
|
||||
\begin{equation*}
|
||||
x(t) = \sum_{n=1}^{+\infty} \frac{2}{n\pi}(1 - (-1)^n) \sin(n\omega_0 t)
|
||||
\end{equation*}
|
||||
} &
|
||||
{
|
||||
\begin{align*}
|
||||
b_n &= \frac{4}{T_0} \int_0^{T_0/2} 1 \sin(n\omega_0 t) \dif t \\
|
||||
&= \frac{4}{T_0} \left[\frac{-\cos(n\omega_0 t)}{n\omega_0}\right]_0^{T_0/2} \\
|
||||
&= \frac{4}{T_0} \left(\frac{-\cos(n2\pi f_0 \frac{T_0}{2}) + 1}{n2\pi f_0}\right) \\
|
||||
&= 2 \left(\frac{-\cos(n\pi) + 1}{n\pi}\right) \\
|
||||
&= \frac{2}{n\pi} (-\cos(n\pi) + 1) \\
|
||||
&= \frac{2}{n\pi} (-(-1)^n + 1) \\
|
||||
b_n &= \boxed{\frac{2}{n\pi} (1 -(-1)^n)}
|
||||
\end{align*}
|
||||
} \\
|
||||
\end{tabularx}
|
||||
|
||||
|
||||
\subsection{Tracer la DSP du signal $x(t)$}
|
||||
|
||||
|
|
Loading…
Reference in a new issue