diff --git a/analyse/exercices/main.tex b/analyse/exercices/main.tex index 18e0b34..961c3dc 100644 --- a/analyse/exercices/main.tex +++ b/analyse/exercices/main.tex @@ -349,12 +349,96 @@ y = y_0 + y_1 = \boxed{\lambda e^{-x} + \mu e^{x} - x^3 - 6x} \end{equation*} - \end{enumerate} \paragraph{$(E_7)$} $y'' + y = \cos{x}$ + \begin{enumerate}[label=\alph*)] + + \item Solution homogène + \begin{align*} + r^2 + 1 = 0 + \implies \Delta = -4 + \implies + \left\{ + \begin{array}{l} + r_1 = \frac{0 - 2i}{2} \\\\ + r_2 = \frac{0 + 2i}{2} \\ + \end{array} + \right. + \implies + \left\{ + \begin{array}{l} + \alpha = 0 \\ + \beta = 1 + \end{array} + \right. + \end{align*} + \begin{align*} + \implies + y_0 = e^{0}(\lambda \cos{x} + \mu \sin{x}) + = \lambda \cos{x} + \mu \sin{x} + \end{align*} + + \item Solution particulière + + second membre~: $e^{\alpha x}\cos{x}$ avec $\alpha = 0$ $\implies \alpha$ non racine de l'équation caractéristique. + \begin{align*} + y_1 &= xe^{\alpha x}(a\cos{\beta x} + b\sin{\beta x}) \\ + &= x(a\cos{x} + b\sin{x}) \\ + \implies + &\left\{ + \begin{array}{l} + y_1 = x(a\cos{x} + b\sin{x}) \\ + y_1' = a\cos{x} + b\sin{x} - x(a\sin{x} - b\cos{x}) \\ + y_1'' = -a\sin{x} + b\cos{x} - a\sin{x} + b\cos{x} - x(a\cos{x} + b\sin{x}) \\ + \end{array} + \right. \\ + \implies + &\left\{ + \begin{array}{l} + y_1 = x(a\cos{x} + b\sin{x}) \\ + y_1' = a\cos{x} + b\sin{x} - x(a\sin{x} - b\cos{x}) \\ + y_1'' = -2a\sin{x} + 2b\cos{x} - x(a\cos{x} + b\sin{x}) \\ + \end{array} + \right. + \end{align*} + + Dans $(E_7)$~: + \begin{align*} + -2a\sin{x} + 2b\cos{x} - x(a\cos{x} + b\sin{x}) + x(a\cos{x} + b\sin{x}) = \cos{x} \\ + \iff + -2a\sin{x} + 2b\cos{x} = \cos{x} \\ + \iff + 2b\cos{x} - 2a\sin{x} = \cos{x} \\ + \implies + \left\{ + \begin{array}{l} + 2b = 1 \\ + -a = 0 \\ + \end{array} + \right. + \implies + \left\{ + \begin{array}{l} + a = 0 \\ + b = \frac{1}{2} \\\\ + \end{array} + \right. + \end{align*} + \begin{align*} + \implies + y_1 = \frac{x\sin{x}}{2} \\ + \end{align*} + + \item Solution générale + \begin{equation*} + y = y_0 + y_1 = \boxed{\lambda \cos{x} + \mu \sin{x} + \frac{x\sin{x}}{2}} + \end{equation*} + + \end{enumerate} + \paragraph{$(E_8)$} $y'' - 4y = (-4x + 3) e^{2x}$