From ca8b2c8d0020465d08a4a62a9302ae56c9b43719 Mon Sep 17 00:00:00 2001 From: "flyingscorpio@clevo" Date: Mon, 14 Mar 2022 10:13:01 +0100 Subject: [PATCH] Continue com num --- communications-numeriques/main.tex | 145 ++++++++++++++++++++++++++++- 1 file changed, 144 insertions(+), 1 deletion(-) diff --git a/communications-numeriques/main.tex b/communications-numeriques/main.tex index eb079d1..494ad51 100644 --- a/communications-numeriques/main.tex +++ b/communications-numeriques/main.tex @@ -6,7 +6,7 @@ \usepackage{styles} \usepackage{tikz} -\usetikzlibrary{shapes.multipart} +\usetikzlibrary{shapes} \DeclareFontFamily{U}{wncy}{} \DeclareFontShape{U}{wncy}{m}{n}{<->wncyr10}{} @@ -58,4 +58,147 @@ \section{Structure générale d'une chaîne de transmission numérique} + \subsection{Système de transmission en bande de base (\emph{base band})} + + Le signal est directement transmis sur le canal de transmission. + + % TODO: add schéma de système de transmission de bande de base + \begin{center} + \begin{tikzpicture}[scale=0.8, transform shape] + \node [ellipse,draw] (source) at (0,0) {Source}; + \node [rectangle,draw] (c) at (3,0) [label=below:Chiffrement] {C}; + \node [rectangle,draw] (r) at (6,0) [label=below:Compression] {R}; + \node [rectangle,draw] (e) at (9,0) [label=below:\parbox{2cm}{\centering Encodage\\Détecteur\\Correcteur\\d'erreurs}] {E}; + \node [rectangle,draw] (b) at (12,0) [label=below:Embrouillage] {B}; + \node [rectangle,draw] (v) at (15,0) [label=right:Codage numérique] {V}; + + \node [diamond,draw] (canal) at (15,-3) {canal}; + + \node [rectangle,draw] (v1) at (15,-6) [label=right:Décodage numérique] {V--1}; + \node [rectangle,draw] (b1) at (12,-6) [label=below:Désembrouillage] {B--1}; + \node [rectangle,draw] (e1) at (9,-6) {E--1}; + \node [rectangle,draw] (r1) at (6,-6) [label=below:Décompression] {R--1}; + \node [rectangle,draw] (c1) at (3,-6) [label=below:Déchiffrement] {C--1}; + \node [ellipse,draw] (utilisation) at (-1,-6) {Utilisation}; + + \draw [-latex] (source) -- (c) node[above, midway]{$\{sk\}$}; + \draw [-latex] (c) -- (r) node[above, midway]{$\{dk\}$}; + \draw [-latex] (r) -- (e) node[above, midway]{$\{ck\}$}; + \draw [-latex] (e) -- (b) node[above, midway]{$\{bk\}$}; + \draw [-latex] (b) -- (v) node[above, midway]{$\{\alpha k\}$}; + + \draw [-latex] (v) -- (canal) node[right, midway]{$e(t)$}; + \draw [-latex] (canal) -- (v1) node[right, midway]{$r(t)$}; + + \draw [-latex] (v1) -- (b1) node[above, midway]{\{$\alpha k_e$\}}; + \draw [-latex] (b1) -- (e1) node[above, midway]{$\{bk_e\}$}; + \draw [-latex] (e1) -- (r1) node[above, midway]{$\{ck_e\}$}; + \draw [-latex] (r1) -- (c1) node[above, midway]{$\{dk_e\}$}; + \draw [-latex] (c1) -- (utilisation) node[above, midway]{$\{sk_e\}$}; + \end{tikzpicture} + \end{center} + + \subsection{Système de transmission en bande transposée (\emph{broad band})} + + \subsection{Intérêt de la transmission numérique} + + Le passage du signal dans un canal qui est déformant (filtrage) et bruyant est un problème de la transmission analogique. + + \begin{equation*} + r(t) = (e(t) + n(t)) * h(t) + \end{equation*} + + \begin{itemize} + \item $n(t)$ est le bruit blanc gaussien. + \item $h(t)$ est la réponse impulsionnelle du filtre caractérisant le canal de transmission. + \end{itemize} + + En général, il est impossible de retrouver $e(t)$ à partir de $r(t)$. + Il faut que $e(t)$ possède des propriétés particulières connues et invariantes dans le temps pour espérer estimer $e(t)$ à partir de $r(t)$. + + Un signal numérique possède ces propriétés~: seulement deux valeurs possibles et des changements de valeurs tous les $nT$. + Il est alors beaucoup plus simple de regénérer le signal émis d'après le signal reçu. + + \paragraph{Méthode d'estimation} + + \begin{enumerate} + \item repérer les transitions du signal + \item à partir de ces transitions, regénérer un signal d'horloge + \item grâce à cette horloge, venir échantillonner à un instant choisi la valeur du signal + \item % TODO: finish + \end{enumerate} + + \subsection{Définitions} + + \paragraph{Débit brut (rate)~: $D$} + + \begin{itemize} + \item nombre de symboles émis pendant l'unité de temps + \item coïncide avec la fréquence d'horloge + \item si les symboles sont binaires, on parle de \emph{débit binaire brut} (bit rate) et l'unité est le bit/s + \end{itemize} + + \paragraph{Débit moyen ou statistique ou entropique (average, statistic, or entropic rate)} + + \begin{equation*} + H_m = \sum p_i \log_m\left(\frac{1}{p_i}\right) + \end{equation*} + + \paragraph{Rapidité de modulation (baud rate)~: $R$} + + C'est l'inverse du temps entre deux transitions du signal qui circule sur la ligne de transmission. + + \begin{itemize} + \item transition de niveau (bande de base) + \item transition d'amplitude, de fréquence ou de phase (bande transposée) + \item l'unité est le BAUD + \end{itemize} + + \paragraph{Valence} + + \begin{itemize} + \item nombre $V$ (parfois $M$) d'états significatifs du signal numérique + \item états~: + \begin{itemize} + \item valeur constante (bande de base) + \item amplitude, fréquence, ou phase (bande transposée) + \end{itemize} + \item cas où le signal numérique a des caractéristiques constantes durant toute le durée de l'état (même valeur, même amplitude, fréquence, ou phase) + \end{itemize} + + \begin{equation*} + R = \frac{D}{\log_2(V)} + \end{equation*} + + \paragraph{Polarité (polarity)} + + \begin{itemize} + \item définition pour les signaux numériques non modulés + \item signal unipolaire~: toutes les valeurs sont soit positives ou nulles, soit négatives ou nulles + \item signal antipolaire~: valeurs symétriques deux à deux par rapport à 0, mais sans la valeur 0 + \item % TODO: finish + \end{itemize} + +\section{Expressions temporelles et spectrales} + + \subsection{Expression spectrale} + + \paragraph{Formule de Bennett} + + \begin{equation*} + S_{xx}(f) = S_{gg}(f) \left[\frac{\sigma_a^2}{T} + \frac{\overline{a}^2}{T^2} \;\Sh\left(\frac{f}{1/T}\right) \right] + \end{equation*} + + \paragraph{Propriétés requises} + + \begin{enumerate} + \item Le spectre ne doit pas avoir de composante continue. + \item Le spectre doit être décroissant et tendre vers 0 aux basses fréquences. + \item Le spectre doit avoir un support le plus étroit possible. + \item Le spectre doit comprendre des raies à la fréquence d'horloge et à ses multiples. + \item le rythme d'horloge doit pouvoir être conservé à court terme. + \item Le spectre instantané doit être proche du spectre théorique. + \item Le signal doit posséder une redondance de manière à pouvoir tester sa vraisemblance. + \end{enumerate} + \end{document}