Make coin par coeur fit into two pages
This commit is contained in:
parent
2a5df099ba
commit
b1df23d81e
2 changed files with 57 additions and 45 deletions
100
analyse/main.tex
100
analyse/main.tex
|
@ -40,7 +40,7 @@
|
|||
|
||||
\paragraph{Dérivées et Primitives}
|
||||
|
||||
Usuelles~:
|
||||
\begin{multicols}{2}
|
||||
|
||||
\begin{tabularx}{\linewidth}{YY}
|
||||
\toprule
|
||||
|
@ -82,48 +82,46 @@
|
|||
\bottomrule
|
||||
\end{tabularx}
|
||||
|
||||
Composées~:
|
||||
\columnbreak
|
||||
|
||||
\begin{multicols}{2}
|
||||
\begin{tabularx}{\linewidth}{lY}
|
||||
\toprule
|
||||
\multirow{2}{*}{Linéarité} & $(u + v)' = u' + v'$ \\
|
||||
& $(au)' = au'$ \\
|
||||
\midrule
|
||||
Produit & $(uv)' = u'v + uv'$ \\
|
||||
\midrule
|
||||
Inverse & $\left(\frac{1}{v}\right)' = - \frac{v'}{v^2}$ \\
|
||||
\midrule
|
||||
Quotient & $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$ \\
|
||||
\midrule
|
||||
Composée & $(f(u))' = u'f'(u)$ \\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
|
||||
\begin{tabularx}{\linewidth}{lY}
|
||||
\toprule
|
||||
\multirow{2}{*}{Linéarité} & $(u + v)' = u' + v'$ \\
|
||||
& $(au)' = au'$ \\
|
||||
\midrule
|
||||
Produit & $(uv)' = u'v + uv'$ \\
|
||||
\midrule
|
||||
Inverse & $\left(\frac{1}{v}\right)' = - \frac{v'}{v^2}$ \\
|
||||
\midrule
|
||||
Quotient & $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$ \\
|
||||
\midrule
|
||||
Composée & $(f(u))' = u'f'(u)$ \\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
\begin{tabularx}{\linewidth}{YY}
|
||||
\toprule
|
||||
Fonction & Primitive \\
|
||||
\toprule
|
||||
$u'u^n$ & $\frac{u^{n+1}}{n+1}$ \\
|
||||
\midrule
|
||||
$\frac{u'}{u^2}$ & $-\frac{1}{u}$ \\
|
||||
\midrule
|
||||
$\frac{u'}{\sqrt{u}}$ & $2\sqrt{u}$ \\
|
||||
\midrule
|
||||
$u'\cos{u}$ & $\sin{u}$ \\
|
||||
\midrule
|
||||
$u'\sin{u}$ & $-\cos{u}$ \\
|
||||
\midrule
|
||||
$\frac{u'}{u}$ & $\ln{|u|}$ \\
|
||||
\midrule
|
||||
$u'e^u$ & $e^u$ \\
|
||||
\midrule
|
||||
$\frac{u'}{1 + u^2}$ & $\arctan{u}$ \\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
|
||||
\begin{tabularx}{\linewidth}{YY}
|
||||
\toprule
|
||||
Fonction & Primitive \\
|
||||
\toprule
|
||||
$u'u^n$ & $\frac{u^{n+1}}{n+1}$ \\
|
||||
\midrule
|
||||
$\frac{u'}{u^2}$ & $-\frac{1}{u}$ \\
|
||||
\midrule
|
||||
$\frac{u'}{\sqrt{u}}$ & $2\sqrt{u}$ \\
|
||||
\midrule
|
||||
$u'\cos{u}$ & $\sin{u}$ \\
|
||||
\midrule
|
||||
$u'\sin{u}$ & $-\cos{u}$ \\
|
||||
\midrule
|
||||
$\frac{u'}{u}$ & $\ln{|u|}$ \\
|
||||
\midrule
|
||||
$u'e^u$ & $e^u$ \\
|
||||
\midrule
|
||||
$\frac{u'}{1 + u^2}$ & $\arctan{u}$ \\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
|
||||
\end{multicols}
|
||||
\end{multicols}
|
||||
|
||||
\paragraph{Intégrales}
|
||||
$\int_a^b f(x)\dif x = [F(x)]_a^b = F(b) - F(a)$
|
||||
|
@ -136,7 +134,6 @@
|
|||
\bottomrule
|
||||
\end{tabularx}
|
||||
|
||||
|
||||
\paragraph{Équations différentielles}
|
||||
|
||||
\begin{tabularx}{\linewidth}{lllc}
|
||||
|
@ -147,11 +144,26 @@
|
|||
\midrule
|
||||
\multicolumn{2}{l}{$ay' + by = f(x)$} & $y_0 + \lambda e^{rx} \quad \text{ avec } r = \frac{-b}{a}$ & \makecell{$y_0$ solution particulière de \\ $ay' + by = f(x)$ \\ $f$ une fonction et $a, b, \lambda\in\mathbb{R}$} \\
|
||||
\midrule
|
||||
\multirow{3}{*}{$ay'' + by' + cy = 0$} & $\Delta > 0$ & $\lambda e^{r_1 x} + \mu e^{r_2 x} + y_1$ & \multirowcell{3}[0pt][c]{$\lambda, \mu \in \mathbb{R}$, $y_1$ solution particulière \\ $\alpha = \frac{-b}{2a} \quad \beta = \frac{\sqrt{|\Delta|}}{2a}$} \\
|
||||
\multirow{3}{*}{$ay'' + by' + cy = 0$} & $\Delta > 0$ & $\lambda e^{r_1 x} + \mu e^{r_2 x}$ & \multirowcell{3}[0pt][c]{$\lambda, \mu \in \mathbb{R}$ \\ $\alpha = \frac{-b}{2a} \quad \beta = \frac{\sqrt{|\Delta|}}{2a}$} \\
|
||||
\cline{2-3}
|
||||
& $\Delta = 0$ & $(\lambda x + \mu) e^{r_0 x} + y_1$ & \\
|
||||
& $\Delta = 0$ & $(\lambda x + \mu) e^{r_0 x}$ & \\
|
||||
\cline{2-3}
|
||||
& $\Delta < 0$ & $e^{\alpha x}(\lambda\cos{(\beta x)} + \mu\sin{(\beta x)}) + y_1$ & \\
|
||||
& $\Delta < 0$ & $e^{\alpha x}(\lambda\cos{(\beta x)} + \mu\sin{(\beta x)})$ & \\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
|
||||
\paragraph{Solutions particulières des équations différentielles de 2\up{nd} ordre}
|
||||
|
||||
\begin{tabularx}{\linewidth}{XX}
|
||||
\toprule
|
||||
\multicolumn{2}{l}{Second membre du type $e^{\alpha x}P(x)$} \\
|
||||
$\alpha$ non racine & $y_1 = e^{\alpha x} Q(x)$ \\
|
||||
$\alpha$ racine simple & $y_1 = x e^{\alpha x} Q(x)$ \\
|
||||
$\alpha$ racine double & $y_1 = x^2 e^{\alpha x} Q(x)$ \\
|
||||
\midrule
|
||||
\multicolumn{2}{l}{Second membre du type $e^{\alpha x}(P_1(x)\cos(\beta x) + P_2(x)\sin(\beta x))$} \\
|
||||
$\alpha + i\beta$ non racine & $y_1 = e^{\alpha x}(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$ \\
|
||||
$\alpha + i\beta$ racine & $y_1 = x e^{\alpha x}(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$ \\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
\usepackage[
|
||||
%showframe,
|
||||
a4paper,includeheadfoot,margin=2cm
|
||||
a4paper,includeheadfoot,margin=2cm,top=1cm,bottom=1cm
|
||||
]{geometry}
|
||||
|
||||
\setcounter{tocdepth}{2}
|
||||
|
|
Loading…
Reference in a new issue