Start echantillonnage
This commit is contained in:
parent
396d9dc6c8
commit
809e065d76
1 changed files with 55 additions and 0 deletions
|
@ -830,4 +830,59 @@
|
|||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\section{Échantillonnage}
|
||||
|
||||
\subsection{Formalisme d'échantillonnage}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\draw[help lines, dashed] (-1,-1) grid (5,3);
|
||||
\draw[-latex] (-0.5,0) -- (5,0) node[right]{$t$};
|
||||
\draw[-latex] (0,-0.5) -- (0,3) node[left]{$A$};
|
||||
\draw[thick,orange,smooth]
|
||||
plot[domain=0:5] ({\x}, {sqrt(\x)})
|
||||
;
|
||||
\node at (2.5,-1) {$x(t), t\in\mathbb{R}$};
|
||||
\end{tikzpicture}
|
||||
$\implies$
|
||||
\begin{tikzpicture}
|
||||
\draw[help lines, dashed] (-1,-1) grid (5,3);
|
||||
\draw[-latex] (-0.5,0) -- (5,0) node[right]{$t$};
|
||||
\draw[-latex] (0,-0.5) -- (0,3) node[left]{$A$};
|
||||
\draw[thick,orange,smooth]
|
||||
plot[domain=0:0.05] ({\x}, {sqrt(\x)})
|
||||
plot[domain=0.95:1.05] ({\x}, {sqrt(\x)})
|
||||
plot[domain=1.95:2.05] ({\x}, {sqrt(\x)})
|
||||
plot[domain=2.95:3.05] ({\x}, {sqrt(\x)})
|
||||
plot[domain=3.95:4.05] ({\x}, {sqrt(\x)})
|
||||
;
|
||||
\node at (1,-0.3) {$T_e$};
|
||||
\node at (2,-0.3) {$2T_e$};
|
||||
\node at (3,-0.3) {$3T_e$};
|
||||
\node at (4,-0.3) {$4T_e$};
|
||||
\node at (2.5,-1) {$x_e(t) = x(nT_e), n\in\mathbb{N}$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
C'est un interrupteur qui réalise l'échantillonnage.
|
||||
Il se ferme tous les $nT_e$.
|
||||
Il reste fermé pendant $\tau < T_e$
|
||||
|
||||
\paragraph{Modélisation mathématique de l'interrupteur}
|
||||
\begin{align*}
|
||||
p_{\tau}(t) =
|
||||
\left\{
|
||||
\begin{array}{l}
|
||||
\frac{1}{\tau}, t \in \left[\frac{-\tau}{2};\frac{\tau}{2}\right] \\
|
||||
0 \text{ sinon} \\
|
||||
\end{array}
|
||||
\right.
|
||||
\end{align*}
|
||||
|
||||
La valeur de l'échantillon du signal $x$ en $nT_e$ est la \emph{valeur moyenne} de $x$ pendant $\tau$, le temps de fermeture de l'interrupteur.
|
||||
\begin{align*}
|
||||
x(nT_e) = \frac{1}{\tau} \int_{nT_e-\frac{\tau}{2}}^{nT_e+\frac{\tau}{2}} x(t) \dif t \\
|
||||
\boxed{x(nT_e) = \int_{-\infty}^{+\infty} p_{\tau}(t - nT_e) x(t) \dif t}
|
||||
\end{align*}
|
||||
|
||||
\end{document}
|
||||
|
|
Loading…
Reference in a new issue