Remove Fourier hors programme

This commit is contained in:
flyingscorpio@arch-desktop 2021-10-20 19:44:21 +02:00
parent 571a153440
commit 59ba7afbbb

View file

@ -589,140 +589,40 @@
\subsection{Exercice 1}
\begin{enumerate}
Déterminer le développement en série de Fourier de la fonction $f$, 2-périodique, définie par~: \\
$f(x) = |x| \quad \forall x \in [-1;1[$
\item Déterminer le développement en série de Fourier de la fonction $f$, 2-périodique, définie par~: \\
$f(x) = |x| \quad \forall x \in [-1;1[$
$f(-x) = |-x| = |x| = f(x)$ \quad donc $f$ est paire $\implies b_n = 0$
$f(-x) = |-x| = |x| = f(x)$ \quad donc $f$ est paire $\implies b_n = 0$
\begin{tabularx}{\linewidth}{XX}
\begin{tabularx}{\linewidth}{XX}
{\begin{align*}
a_0 &= \frac{1}{2} \int_{-1}^1 |x| \dif x \\
&= \int_{0}^1 x \dif x \\
&= \left[\frac{x^2}{2}\right]_0^1 \\
a_0 &= \frac{1}{2}
\end{align*}} &
{\begin{align*}
a_n &= \frac{2}{T} \int_{-T/2}^{T/2} |x| \cos{\frac{2\pi nx}{T}} \dif x \\
a_n &= \frac{2}{2} \int_{-1}^1 |x| \cos{\frac{2\pi nx}{2}} \dif x \\
&= 2\int_0^1 x \cos(n\pi x) \dif x \\
\text{IPP }
&\left\{
\begin{array}{ll}
u = x & u' = 1 \\
v' = \cos(n\pi x) & v = \frac{\sin{n\pi x}}{n\pi} \\
\end{array}
\right. \\
a_n &= 2 \left(\left[x\frac{\sin{n\pi x}}{n\pi}\right]_0^1 - \int_0^1 \frac{\sin{n\pi x}}{n\pi} \dif x \right) \\
&= 2 \left(\frac{\sin{n\pi}}{n\pi} - 0 + \left[\frac{\cos{n\pi x}}{(n\pi)^2}\right]_0^1 \right) \\
&= 2 \left(0 + \frac{\cos{n\pi}}{(n\pi)^2} - \frac{\cos{0}}{(n\pi)^2}\right) \\
a_n &= 2\frac{(-1)^n - 1}{(n\pi)^2}
\end{align*}} \\
\end{tabularx}
\begin{equation*}
\implies f(x) = \frac{1}{2} + \sum_{n=1}^{+\infty} 2\frac{(-1)^n - 1}{(n\pi)^2} \cos(n\pi x)
\end{equation*}
\item En déduire que \quad $\frac{\pi^2}{8} = \sum_{n=0}^{+\infty} \frac{1}{(2n + 1)^2}$
\begin{tabularx}{\linewidth}{XX}
{pour $x = 0$~:
\begin{align*}
f(0) &= \frac{1}{2} + \sum_{n=1}^{+\infty} 2\frac{(-1)^n - 1}{(n\pi)^2} \cos{0} \\
\iff 0 &= \frac{1}{2} + \sum_{n=1}^{+\infty} 2\frac{(-1)^n - 1}{(n\pi)^2} \\
\iff -\frac{1}{2} &= 2 \sum_{n=1}^{+\infty} \frac{(-1)^n - 1}{(n\pi)^2} \\
\iff -\frac{1}{4} &= \sum_{n=1}^{+\infty} \frac{(-1)^n - 1}{(n\pi)^2} \\
\iff \frac{1}{4} &= \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} + 1}{(n\pi)^2} \\
\iff \frac{\pi^2}{4} &= \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} + 1}{n^2} \\
\iff \frac{\pi^2}{8} &= \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} + 1}{2n^2}
\end{align*}} &
{pour $x = -1$~:
\begin{align*}
f(-1) &= \frac{1}{2} + \sum_{n=1}^{+\infty} 2\frac{(-1)^n - 1}{(n\pi)^2} \cos(-n\pi) \\
\iff 1 &= \frac{1}{2} + 2\sum_{n=1}^{+\infty} \frac{(-1)^n - 1}{(n\pi)^2} \cos(n\pi) \\
\iff \frac{1}{2} &= 2\sum_{n=1}^{+\infty} \frac{(-1)^n - 1}{(n\pi)^2} (-1)^n \\
\iff \frac{1}{4} &= \sum_{n=1}^{+\infty} \frac{(-1)^{2n} - (-1)^n}{(n\pi)^2} \\
\iff \frac{1}{4} &= \sum_{n=1}^{+\infty} \frac{1 - (-1)^n}{(n\pi)^2} \\
\iff \frac{\pi^2}{4} &= \sum_{n=1}^{+\infty} \frac{1 + (-1)^{n+1}}{n^2} \\
\iff \frac{\pi^2}{8} &= \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} + 1}{2n^2} \\
\end{align*}} \\
\end{tabularx}
\item Appliquer l'identité de Parseval-Bessel.
En déduire la valeur de la somme \quad $\sum_{n=0}^{+\infty}\frac{1}{(2n + 1)^4}$
\begin{align*}
a_0^2 + \frac{1}{2}\sum_{n=1}^{+\infty}a_n^2 = \frac{1}{2}\int_{-1}^{1}f^2(x) \dif x \\
\end{align*}
\end{enumerate}
\subsection{Exercice 2}
\begin{enumerate}
\item Déterminer la série de Fourier de la fonction $f$, $2\pi$-périodique, définie par~: \\
\begin{align*}
\left\{
\begin{array}{l}
f(x) = e^x \\
f(\pi) = \cosh{\pi}
\end{array}
\right.
\quad \forall x \in \; ]{-\pi}, \pi[
\end{align*}
$f$ est ni paire, ni impaire, ni continue.
La série de Fourier est donc de la forme~:
\begin{equation*}
S_f(x) = a_0 + \sum_{n=1}^{+\infty} ( a_n \cos(nx) + b_n \sin(nx) )
\end{equation*}
\begin{align*}
a_0 &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \dif x \\
&= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^x \dif x \\
&= \frac{1}{2\pi} [e^x]_{-\pi}^{\pi} \\
&= \frac{1}{2\pi} (e^{\pi} - e^{-\pi}) \\
&= \frac{1}{2\pi} \left(e^{\pi} - \frac{1}{e^{\pi}}\right) \\
&= \frac{1}{2\pi} \left(\frac{e^{2\pi}}{e^{\pi}} - \frac{1}{e^{\pi}}\right) \\
&= \frac{1}{2\pi} \times \frac{e^{2\pi} - 1}{e^{\pi}} \\
&= \frac{e^{2\pi} - 1}{2\pi e^{\pi}} \\
\end{align*}
\begin{align*}
a_n &= \frac{2}{2\pi} \int_{-\pi}^{\pi} f(x) \cos{\frac{2\pi nx}{2\pi}} \dif x \\
&= \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \cos(nx) \dif x \\
&\text{IPP }
\left\{
{\begin{align*}
a_0 &= \frac{1}{2} \int_{-1}^1 |x| \dif x \\
&= \int_{0}^1 x \dif x \\
&= \left[\frac{x^2}{2}\right]_0^1 \\
a_0 &= \frac{1}{2}
\end{align*}} &
{\begin{align*}
a_n &= \frac{2}{T} \int_{-T/2}^{T/2} |x| \cos{\frac{2\pi nx}{T}} \dif x \\
a_n &= \frac{2}{2} \int_{-1}^1 |x| \cos{\frac{2\pi nx}{2}} \dif x \\
&= 2\int_0^1 x \cos(n\pi x) \dif x \\
\text{IPP }
&\left\{
\begin{array}{ll}
u = e^x & u' = e^x \\
v' = \cos(nx) & v = \frac{\sin(nx)}{n} \\
u = x & u' = 1 \\
v' = \cos(n\pi x) & v = \frac{\sin{n\pi x}}{n\pi} \\
\end{array}
\right. \\
a_n &= \frac{1}{\pi} \left(\left[e^x \frac{\sin{nx}}{n} \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} e^x \frac{\sin(nx)}{n} \dif x \right) \\
&= \frac{1}{\pi} \left(\left[e^x \frac{\sin{nx}}{n} \right]_{-\pi}^{\pi} - \frac{1}{n} \int_{-\pi}^{\pi} e^x \sin(nx) \dif x \right) \\
&\text{IPP }
\left\{
\begin{array}{ll}
u = e^x & u' = e^x \\
v' = \sin(nx) & v = \frac{-\cos(nx)}{n} \\
\end{array}
\right. \\
a_n &= \frac{1}{\pi} \left(\left[e^x \frac{\sin{nx}}{n} \right]_{-\pi}^{\pi} - \frac{1}{n} \left(\left[-e^x\frac{\cos(nx)}{n}\right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} -e^x \frac{\cos(nx)}{n} \dif x \right)\right) \\
&= \frac{1}{\pi} \left(\left[e^x \frac{\sin{nx}}{n} \right]_{-\pi}^{\pi} - \frac{1}{n} \left(\left[-e^x\frac{\cos(nx)}{n}\right]_{-\pi}^{\pi} + \int_{-\pi}^{\pi} e^x \frac{\cos(nx)}{n} \dif x \right)\right) \\
&= \frac{1}{\pi} \left(\left[e^x \frac{\sin{nx}}{n} \right]_{-\pi}^{\pi} + \frac{1}{n} \left(\left[e^x\frac{\cos(nx)}{n}\right]_{-\pi}^{\pi} - \frac{1}{n} \int_{-\pi}^{\pi} e^x \cos(nx) \dif x \right)\right) \\
\end{align*}
\begin{align*}
b_n &=
\end{align*}
a_n &= 2 \left(\left[x\frac{\sin{n\pi x}}{n\pi}\right]_0^1 - \int_0^1 \frac{\sin{n\pi x}}{n\pi} \dif x \right) \\
&= 2 \left(\frac{\sin{n\pi}}{n\pi} - 0 + \left[\frac{\cos{n\pi x}}{(n\pi)^2}\right]_0^1 \right) \\
&= 2 \left(0 + \frac{\cos{n\pi}}{(n\pi)^2} - \frac{\cos{0}}{(n\pi)^2}\right) \\
a_n &= 2\frac{(-1)^n - 1}{(n\pi)^2}
\end{align*}} \\
\end{enumerate}
\end{tabularx}
\begin{equation*}
\implies f(x) = \frac{1}{2} + \sum_{n=1}^{+\infty} 2\frac{(-1)^n - 1}{(n\pi)^2} \cos(n\pi x)
\end{equation*}
\end{document}