Explicit more about intégration par changement de variables
This commit is contained in:
parent
6ec9eead21
commit
3cdfc6787f
1 changed files with 10 additions and 6 deletions
|
@ -258,15 +258,19 @@
|
|||
\paragraph{Exemple}
|
||||
|
||||
\begin{align*}
|
||||
\int_0^{\ln{\sqrt{3}}} \frac{1}{e^x + e^{-x}}\,\mathrm{d}x\text{,\quad on pose }u=e^x
|
||||
\int_0^{\ln{\sqrt{3}}} \frac{1}{e^x + e^{-x}}\,\mathrm{d}x\text{,\quad on pose }u&=e^x \\
|
||||
u' &= e^x = \frac{\mathrm{d}u}{\mathrm{d}x} \\
|
||||
\mathrm{d}x &= \frac{\mathrm{d}u}{e^x} = \frac{\mathrm{d}u}{u}
|
||||
\end{align*}
|
||||
|
||||
Cela nous donne~:
|
||||
|
||||
\begin{align*}
|
||||
&= \int_{e^0}^{e^{\ln{\sqrt{3}}}} \frac{1}{u + \frac{1}{u}}\,\frac{\mathrm{d}u}{u} \\\\
|
||||
&= \int_1^{\sqrt{3}} \frac{1}{u^2 + 1}\,\mathrm{d}u
|
||||
= [\arctan{u}]_1^{\sqrt{3}}
|
||||
= \arctan{\sqrt{3}} - \arctan{1}
|
||||
= \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}
|
||||
\int_{e^0}^{e^{\ln{\sqrt{3}}}} \frac{1}{u + \frac{1}{u}}\,\frac{\mathrm{d}u}{u} \\
|
||||
&= \int_1^{\sqrt{3}} \frac{1}{u^2 + 1}\,\mathrm{d}u \\
|
||||
&= [\arctan{u}]_1^{\sqrt{3}} \\
|
||||
&= \arctan{\sqrt{3}} - \arctan{1} \\
|
||||
&= \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12} \\
|
||||
\end{align*}
|
||||
|
||||
\clearpage
|
||||
|
|
Loading…
Reference in a new issue