Put solution homogène of equa diff du 2nd ordre in coin par coeur
This commit is contained in:
parent
84ac539b62
commit
2448203965
1 changed files with 10 additions and 4 deletions
|
@ -145,13 +145,19 @@
|
|||
|
||||
\subsection{Équations différentielles}
|
||||
|
||||
\begin{tabularx}{\linewidth}{YYc}
|
||||
\begin{tabularx}{\linewidth}{lllc}
|
||||
\toprule
|
||||
Type d'E.D. & Solutions & \\
|
||||
\multicolumn{2}{l}{Type d'E.D.} & Solutions & \\
|
||||
\toprule
|
||||
$ay' + by = 0$ & $\lambda e^{rx} \quad \text{ avec } r = \frac{-b}{a}$ & $a, b, \lambda \in \mathbb{R}$ \\
|
||||
\multicolumn{2}{l}{$ay' + by = 0$} & $\lambda e^{rx} \quad \text{ avec } r = \frac{-b}{a}$ & $a, b, \lambda\in\mathbb{R}$ \\
|
||||
\midrule
|
||||
$ay' + by = f(x)$ & $y_0 + \lambda e^{rx} \quad \text{ avec } r = \frac{-b}{a}$ & \makecell{$y_0$ solution particulière de $ay' + by = f(x)$ \\ $f$ une fonction et $a, b, \lambda \in \mathbb{R}$} \\
|
||||
\multicolumn{2}{l}{$ay' + by = f(x)$} & $y_0 + \lambda e^{rx} \quad \text{ avec } r = \frac{-b}{a}$ & \makecell{$y_0$ solution particulière de $ay' + by = f(x)$ \\ $f$ une fonction et $a, b, \lambda\in\mathbb{R}$} \\
|
||||
\midrule
|
||||
\multirow{3}{*}{$ay'' + by' + cy = 0$} & $\Delta > 0$ & $\lambda e^{r_1 x} + \mu e^{r_2 x}$ & \multirow{3}{*}{$\lambda, \mu \in \mathbb{R}$} \\
|
||||
\cline{2-3}
|
||||
& $\Delta = 0$ & $(\lambda + \mu x) e^{r_0 x}$ & \\
|
||||
\cline{2-3}
|
||||
& $\Delta < 0$ & $e^{\alpha x}(\lambda\cos{(\beta x)} + \mu\sin{(\beta x)})$ & \\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
|
||||
|
|
Loading…
Reference in a new issue