Finish E5, equa diff 2nd ordre
This commit is contained in:
parent
a9ca852ba7
commit
1184f3256a
1 changed files with 73 additions and 0 deletions
|
@ -206,6 +206,79 @@
|
||||||
\paragraph{$(E_5)$}
|
\paragraph{$(E_5)$}
|
||||||
$y'' - 7y' + 10 y = (x + 3) e^{2x}$
|
$y'' - 7y' + 10 y = (x + 3) e^{2x}$
|
||||||
|
|
||||||
|
\begin{enumerate}[label=\alph*)]
|
||||||
|
|
||||||
|
\item Solution homogène
|
||||||
|
\begin{align*}
|
||||||
|
r^2 - 7r + 10 = 0
|
||||||
|
\implies \Delta = 9
|
||||||
|
\implies
|
||||||
|
\left\{
|
||||||
|
\begin{array}{l}
|
||||||
|
r_1 = \frac{7 - 3}{2} = 2 \\\\
|
||||||
|
r_2 = \frac{7 + 3}{2} = 5 \\
|
||||||
|
\end{array}
|
||||||
|
\right.
|
||||||
|
\end{align*}
|
||||||
|
\begin{align*}
|
||||||
|
\implies
|
||||||
|
y_0 = \lambda e^{2x} + \mu e^{5x}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\item Solution particulière
|
||||||
|
|
||||||
|
Second membre~: $(x + 3)e^{\alpha x}$ avec $\alpha = 2$ $\implies \alpha$ racine de l'équation caractéristique.
|
||||||
|
\begin{align*}
|
||||||
|
&\left\{
|
||||||
|
\begin{array}{l}
|
||||||
|
y_1 = xe^{2x} (ax + b) \\
|
||||||
|
y_1' = (2x + 1)e^{2x}(ax + b) + axe^{2x} \\
|
||||||
|
y_1'' = (4ax + 2a + 2b)e^{2x} + (4ax^2 + 4ax + 4bx + 2b)e^{2x} \\
|
||||||
|
\end{array}
|
||||||
|
\right. \\
|
||||||
|
\implies
|
||||||
|
&\left\{
|
||||||
|
\begin{array}{l}
|
||||||
|
y_1 = xe^{2x} (ax + b) \\
|
||||||
|
y_1' = (2ax^2 + 2ax + 2bx + b)e^{2x} \\
|
||||||
|
y_1'' = (4ax^2 + 8ax + 4bx + 2a + 4b)e^{2x} \\
|
||||||
|
\end{array}
|
||||||
|
\right.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Dans $(E_5)$~:
|
||||||
|
|
||||||
|
$(4ax^2 + 8ax + 4bx + 2a + 4b)e^{2x} - 7(2ax^2 + 2ax + 2bx + b)e^{2x} + 10(ax + b)xe^{2x} = (x + 3) e^{2x}$
|
||||||
|
\begin{align*}
|
||||||
|
\implies
|
||||||
|
-6ax + 2a - 3b = x + 3
|
||||||
|
\implies
|
||||||
|
\left\{
|
||||||
|
\begin{array}{l}
|
||||||
|
-6a = 1 \\
|
||||||
|
2a - 3b = 3 \\
|
||||||
|
\end{array}
|
||||||
|
\right.
|
||||||
|
\implies
|
||||||
|
\left\{
|
||||||
|
\begin{array}{l}
|
||||||
|
a = \frac{-1}{6} \\\\
|
||||||
|
b = \frac{-10}{9} \\
|
||||||
|
\end{array}
|
||||||
|
\right.
|
||||||
|
\end{align*}
|
||||||
|
\begin{align*}
|
||||||
|
\implies
|
||||||
|
y_1 = xe^{2x}(-\frac{1}{6}x - \frac{10}{9})
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\item Solution générale
|
||||||
|
\begin{equation*}
|
||||||
|
y = y_0 + y_1 = \boxed{\lambda e^{2x} + \mu e^{5x} + xe^{2x}(-\frac{1}{6}x - \frac{10}{9})}
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
\paragraph{$(E_6)$}
|
\paragraph{$(E_6)$}
|
||||||
$y'' - y = x^3$
|
$y'' - y = x^3$
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue