2021-09-14 21:47:45 +02:00
|
|
|
\documentclass[a4paper,french,12pt]{article}
|
|
|
|
|
2021-09-30 20:57:10 +02:00
|
|
|
\title{Logique Programmable --- Prérequis --- Exercices}
|
2021-09-17 14:12:59 +02:00
|
|
|
\author{}
|
2021-09-14 21:47:45 +02:00
|
|
|
\date{Dernière compilation~: \today{} à \currenttime}
|
|
|
|
|
2022-03-14 08:28:16 +01:00
|
|
|
\usepackage{../styles}
|
2021-09-18 12:50:15 +02:00
|
|
|
\usepackage{enumitem}
|
2021-09-14 21:47:45 +02:00
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
\maketitle
|
|
|
|
|
|
|
|
\section{Simplification des fonctions logiques}
|
2021-09-18 12:50:15 +02:00
|
|
|
|
2021-09-14 21:47:45 +02:00
|
|
|
\subsection{Exercice 1}
|
2021-09-18 12:50:15 +02:00
|
|
|
|
|
|
|
\begin{multicols}{4}
|
|
|
|
|
|
|
|
\begin{enumerate}[label=\alph*)]
|
|
|
|
|
|
|
|
\item $a \cdot b \cdot c \cdot d = 1$
|
|
|
|
|
|
|
|
\item $a + b + c + d = 0$
|
|
|
|
|
|
|
|
\item $a + b + c + d = 1$
|
|
|
|
|
|
|
|
\item $a \cdot b \cdot c \cdot d = 0$
|
|
|
|
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
\end{multicols}
|
|
|
|
|
2021-09-14 21:47:45 +02:00
|
|
|
\subsection{Exercice 2}
|
2021-09-18 12:50:15 +02:00
|
|
|
|
|
|
|
\begin{enumerate}[label=\alph*)]
|
|
|
|
|
|
|
|
\item \begin{align*}
|
|
|
|
F(a, b, c) &= a\bar{b} + abc + a\bar{c} \\
|
|
|
|
F(0,1,1) &= 0 \\
|
|
|
|
F(1,1,0) &= 1 \\
|
|
|
|
F(1,0,0) &= 1 \\
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\item \begin{equation*}
|
|
|
|
F(a, b) = \bar{a}\bar{b} + b = \bar{a} + b
|
|
|
|
\end{equation*}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tabular}{cc|c|c|c|c}
|
|
|
|
\toprule
|
|
|
|
$a$ & $b$ & $\bar{a}\bar{b}$ & $\bar{a}\bar{b} + b$ & $\bar{a}$ & $\bar{a} + b$ \\
|
|
|
|
\midrule
|
|
|
|
0 & 0 & 1 & 1 & 1 & 1 \\
|
|
|
|
0 & 1 & 0 & 1 & 0 & 1 \\
|
|
|
|
1 & 0 & 0 & 0 & 0 & 0 \\
|
|
|
|
1 & 1 & 0 & 1 & 0 & 1 \\
|
|
|
|
\midrule
|
|
|
|
& & & $\uparrow$ & = & $\uparrow$ \\
|
|
|
|
\bottomrule
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\item \begin{align*}
|
|
|
|
F(a, b, c) &= a\bar{b} + ab + ac \\
|
|
|
|
&= a (\bar{b} + b + c) \\
|
|
|
|
&= a (1 + c) \\
|
|
|
|
&= a \cdot 1 = a
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\item \begin{align*}
|
|
|
|
F(a, b, c) &= \bar{a}\bar{b}c + a\bar{b}\bar{c} + a\bar{b}c + ab\bar{c} + abc \\
|
|
|
|
&= \bar{a}\bar{b}c + a\bar{b}\bar{c} + ab\bar{c} + ac(b + \bar{b}) \\
|
|
|
|
&= \bar{a}\bar{b}c + a\bar{b}\bar{c} + ab\bar{c} + ac \\
|
|
|
|
&= \bar{a}\bar{b}c + a\bar{c} + ac \\
|
|
|
|
&= \bar{a}\bar{b}c + a \\
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\end{enumerate}
|
|
|
|
|
2021-09-14 21:47:45 +02:00
|
|
|
\subsection{Exercice 3}
|
2021-09-18 12:50:15 +02:00
|
|
|
|
|
|
|
\begin{enumerate}[label=\alph*)]
|
|
|
|
|
|
|
|
\item \begin{align*}
|
|
|
|
F_1 &= (a + b) \cdot (\bar{a} + \bar{b}) \\
|
|
|
|
\overline{F_1} &= \overline{(a + b) \cdot (\bar{a} + \bar{b})} \\
|
|
|
|
&= \overline{(a + b)} + \overline{(\bar{a} + \bar{b})} \\
|
|
|
|
&= \bar{a}\bar{b} + ab \\
|
|
|
|
&= \overline{a \oplus b} \\
|
|
|
|
&= \bar{a} \oplus b = a \oplus \bar{b} \\
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\item \begin{align*}
|
|
|
|
F_2 &= a (c + d) + (\bar{a} + c) \cdot (\bar{b} + c + d) \\
|
|
|
|
\overline{F_2} &= \overline{a (c + d) + (\bar{a} + c) \cdot (\bar{b} + c + d)} \\
|
|
|
|
&= \overline{a (c + d)} \cdot \overline{(\bar{a} + c)} + \overline{(\bar{b} + c + d)} \\
|
|
|
|
&= \overline{ac + ad} \cdot a\bar{c} + b\bar{c}\bar{d} \\
|
|
|
|
&= \overline{ac} \cdot \overline{ad} \cdot a\bar{c} + b\bar{c}\bar{d} \\
|
|
|
|
&= (\bar{a} + \bar{c}) \cdot (\bar{a} + \bar{d}) \cdot a\bar{c} + b\bar{c}\bar{d} \\
|
2021-09-18 19:27:16 +02:00
|
|
|
&= (\bar{a} + \bar{a}\bar{d} + \bar{a}\bar{c} + \bar{c}\bar{d}) \cdot a\bar{c} + b\bar{c}\bar{d} \\
|
|
|
|
&= a\bar{c}\bar{d} + b\bar{c}\bar{d} \\
|
|
|
|
&= (a + b) \cdot \bar{c}\bar{d} \\
|
2021-09-18 12:50:15 +02:00
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\end{enumerate}
|
|
|
|
|
2021-09-14 21:47:45 +02:00
|
|
|
\subsection{Exercice 4}
|
2021-09-18 12:50:15 +02:00
|
|
|
|
2021-09-14 21:47:45 +02:00
|
|
|
\subsection{Exercice 5}
|
2021-09-18 12:50:15 +02:00
|
|
|
|
2021-09-14 21:47:45 +02:00
|
|
|
\subsection{Exercice 6}
|
2021-09-18 12:50:15 +02:00
|
|
|
|
2021-09-14 21:47:45 +02:00
|
|
|
\subsection{Exercice 7}
|
|
|
|
|
|
|
|
\section{Circuits de logique combinatoire}
|
2021-09-18 12:50:15 +02:00
|
|
|
|
2021-09-14 21:47:45 +02:00
|
|
|
\subsection{Exercice 1}
|
|
|
|
|
|
|
|
\includegraphics[width=0.6\linewidth]{./img/2.1.png}
|
|
|
|
|
|
|
|
\subsection{Exercice 2}
|
|
|
|
|
|
|
|
a/ Élaborer l'équation logique $F(S_1,S_0,C,a,b)$ du circuit ci-dessous.
|
|
|
|
|
|
|
|
\includegraphics[width=\linewidth]{./img/2.2.png}
|
|
|
|
|
|
|
|
\begin{equation*}
|
|
|
|
F = \bar{c} + \overline{S_0}(ab + \bar{a}\bar{b}S_1)
|
|
|
|
\end{equation*}
|
|
|
|
|
|
|
|
b/ Compléter le tableau suivant pour C = 0~:
|
|
|
|
|
|
|
|
$F = \bar{c}$
|
|
|
|
|
|
|
|
\begin{tabularx}{0.8\linewidth}{cccY}
|
|
|
|
\toprule
|
|
|
|
C & $S_1$ & $S_0$ & $F(a,b)$ \\
|
|
|
|
\midrule
|
|
|
|
0 & 0 & 0 & 1 \\
|
|
|
|
0 & 0 & 1 & 1 \\
|
|
|
|
0 & 1 & 0 & 1 \\
|
|
|
|
0 & 1 & 1 & 1 \\
|
|
|
|
\bottomrule
|
|
|
|
\end{tabularx}
|
|
|
|
|
|
|
|
c/ Compléter le tableau suivant pour C = 1~:
|
|
|
|
|
|
|
|
$F = \overline{S_0}(ab + \bar{a}\bar{b}S_1)$
|
|
|
|
|
|
|
|
\begin{tabularx}{0.8\linewidth}{cccY}
|
|
|
|
\toprule
|
|
|
|
C & $S_1$ & $S_0$ & $F(a,b)$ \\
|
|
|
|
\midrule
|
|
|
|
1 & 0 & 0 & $ab$ \\
|
|
|
|
1 & 0 & 1 & 0 \\
|
|
|
|
1 & 1 & 0 & $ab + \bar{a}\bar{b}$ \\
|
|
|
|
1 & 1 & 1 & 0 \\
|
|
|
|
\bottomrule
|
|
|
|
\end{tabularx}
|
|
|
|
|
|
|
|
\subsection{Exercice 3}
|
|
|
|
|
|
|
|
Soit le schéma de $H(A,B,C,D)$ utilisant un multiplexeur à 3 entrées d'adresse.
|
|
|
|
|
|
|
|
\includegraphics[width=0.6\linewidth]{./img/2.3.png}
|
|
|
|
|
|
|
|
a/ Donner la table de vérité de la fonction $H$.
|
|
|
|
|
2021-09-18 12:50:15 +02:00
|
|
|
\begin{tabularx}{0.7\linewidth}{X|YYY|Y|Y}
|
2021-09-14 21:47:45 +02:00
|
|
|
\toprule
|
2021-09-18 12:50:15 +02:00
|
|
|
& A & B & C & D & H \\
|
2021-09-14 21:47:45 +02:00
|
|
|
\midrule
|
|
|
|
0 & 0 & 0 & 0 & 0 & 0 \\
|
|
|
|
1 & 0 & 0 & 0 & 1 & 0 \\
|
|
|
|
2 & 0 & 0 & 1 & 0 & 0 \\
|
2021-09-18 12:50:15 +02:00
|
|
|
3 & 0 & 0 & 1 & 1 & 1 \\
|
2021-09-14 21:47:45 +02:00
|
|
|
4 & 0 & 1 & 0 & 0 & 0 \\
|
2021-09-18 12:50:15 +02:00
|
|
|
5 & 0 & 1 & 0 & 1 & 1 \\
|
2021-09-14 21:47:45 +02:00
|
|
|
6 & 0 & 1 & 1 & 0 & 1 \\
|
|
|
|
7 & 0 & 1 & 1 & 1 & 0 \\
|
|
|
|
\midrule
|
|
|
|
8 (0) & 1 & 0 & 0 & 0 & 0 \\
|
|
|
|
9 (1) & 1 & 0 & 0 & 1 & 0 \\
|
2021-09-18 12:50:15 +02:00
|
|
|
10 (2) & 1 & 0 & 1 & 0 & 0 \\
|
2021-09-14 21:47:45 +02:00
|
|
|
11 (3) & 1 & 0 & 1 & 1 & 1 \\
|
|
|
|
12 (4) & 1 & 1 & 0 & 0 & 0 \\
|
|
|
|
13 (5) & 1 & 1 & 0 & 1 & 1 \\
|
|
|
|
14 (6) & 1 & 1 & 1 & 0 & 1 \\
|
|
|
|
15 (7) & 1 & 1 & 1 & 1 & 0 \\
|
|
|
|
\bottomrule
|
|
|
|
\end{tabularx}
|
|
|
|
|
|
|
|
b/ Exprimer $H(A,B,C,D)$ sous la forme disjonctive.
|
|
|
|
|
2021-09-18 12:50:15 +02:00
|
|
|
\begin{align*}
|
|
|
|
H(A,B,C,D) &= \bar{A}\bar{B}CD + \bar{A}B\bar{C}D + \bar{A}BC\bar{D} + A\bar{B}CD + AB\bar{C}D + ABC\bar{D} \\
|
|
|
|
&= \sum(3, 5, 6, 11, 13, 14)
|
|
|
|
\end{align*}
|
2021-09-14 21:47:45 +02:00
|
|
|
|
|
|
|
\subsection{Exercice 4}
|
|
|
|
|
|
|
|
\end{document}
|